Molecular Microbiology, John Innes Centre, Norwich, Norfolk, United Kingdom.
School of Biological Sciences, University of East Anglia, Norwich, Norfolk, United Kingdom.
PLoS Genet. 2020 Jun 25;16(6):e1008837. doi: 10.1371/journal.pgen.1008837. eCollection 2020 Jun.
Control of mRNA translation is a crucial regulatory mechanism used by bacteria to respond to their environment. In the soil bacterium Pseudomonas fluorescens, RimK modifies the C-terminus of ribosomal protein RpsF to influence important aspects of rhizosphere colonisation through proteome remodelling. In this study, we show that RimK activity is itself under complex, multifactorial control by the co-transcribed phosphodiesterase trigger enzyme (RimA) and a polyglutamate-specific protease (RimB). Furthermore, biochemical experimentation and mathematical modelling reveal a role for the nucleotide second messenger cyclic-di-GMP in coordinating these activities. Active ribosome regulation by RimK occurs by two main routes: indirectly, through changes in the abundance of the global translational regulator Hfq and directly, with translation of surface attachment factors, amino acid transporters and key secreted molecules linked specifically to RpsF modification. Our findings show that post-translational ribosomal modification functions as a rapid-response mechanism that tunes global gene translation in response to environmental signals.
mRNA 翻译的控制是细菌用来响应环境的关键调节机制。在土壤细菌荧光假单胞菌中,RimK 修饰核糖体蛋白 RpsF 的 C 末端,通过蛋白质组重塑来影响根际定殖的重要方面。在这项研究中,我们表明 RimK 活性本身受到转录偶联的磷酸二酯酶触发酶(RimA)和多聚谷氨酸特异性蛋白酶(RimB)的复杂多因素控制。此外,生化实验和数学建模揭示了核苷酸第二信使环二鸟苷酸在协调这些活性中的作用。RimK 通过两种主要途径进行活性核糖体调节:间接通过全局翻译调节剂 Hfq 的丰度变化,以及直接通过与 RpsF 修饰特异性相关的表面附着因子、氨基酸转运体和关键分泌分子的翻译。我们的研究结果表明,翻译后核糖体修饰作为一种快速反应机制,根据环境信号调节全局基因翻译。