Suppr超能文献

GABA 能中间神经元的皮层分布由迁移时间和大脑大小决定。

Cortical distribution of GABAergic interneurons is determined by migration time and brain size.

机构信息

Laboratory of Cortical Circuits in Health and Disease, CIPF Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain.

Department of Psychiatry, Neuroscience Program and the Nina Ireland Laboratory of Developmental Neurobiology, University of California San Francisco, San Francisco, CA 94158, USA.

出版信息

Development. 2020 Jul 22;147(14):dev185033. doi: 10.1242/dev.185033.

Abstract

Cortical interneurons (CINs) originate in the ganglionic eminences (GEs) and migrate tangentially to the cortex guided by different attractive and repulsive cues. Once inside the cortex, the cellular and molecular mechanisms determining the migration of CINs along the rostrocaudal axis are less well understood. Here, we investigated the cortical distribution of CINs originating in the medial and caudal GEs at different time points. Using molecular and genetic labeling, we showed that, in the mouse, early- and late-born CINs (E12 versus E15) are differentially distributed along the rostrocaudal axis. Specifically, late-born CINs are preferentially enriched in cortical areas closer to their respective sites of origin in the medial or caudal GE. Surprisingly, our experiments failed to show a preferential migration pattern along the rostrocaudal axis for medial- or caudal-born CINs. Moreover, transplantation experiments suggested that the rostrocaudal dispersion of CINs depends on the developmental stage of the host brain and is limited by the migration time and the increasing size of the developing brain. These data suggest that the embryonic expansion of the cortex contributes to the rostrocaudal distribution of CINs.

摘要

皮质中间神经元(CINs)起源于神经节隆起(GEs),并在不同的趋化和排斥信号的引导下沿切线方向迁移到皮质。一旦进入皮质,确定 CIN 沿前后轴迁移的细胞和分子机制就不太清楚了。在这里,我们研究了起源于内侧和尾侧 GE 的 CIN 在不同时间点在皮质中的分布。使用分子和遗传标记,我们表明,在小鼠中,早期和晚期出生的 CIN(E12 与 E15)沿前后轴呈不同的分布。具体来说,晚期出生的 CIN 更丰富地分布在靠近它们在内侧或尾侧 GE 中各自起源部位的皮质区域。令人惊讶的是,我们的实验未能显示出内侧或尾侧出生的 CIN 沿前后轴的优先迁移模式。此外,移植实验表明,CIN 的前后扩散取决于宿主大脑的发育阶段,并且受到迁移时间和发育中大脑不断增大的限制。这些数据表明,皮质的胚胎扩张有助于 CIN 的前后分布。

相似文献

1
Cortical distribution of GABAergic interneurons is determined by migration time and brain size.
Development. 2020 Jul 22;147(14):dev185033. doi: 10.1242/dev.185033.
2
Extracortical origin of some murine subplate cell populations.
Proc Natl Acad Sci U S A. 2014 Jun 10;111(23):8613-8. doi: 10.1073/pnas.1323816111. Epub 2014 Apr 28.
3
The embryonic preoptic area is a novel source of cortical GABAergic interneurons.
J Neurosci. 2009 Jul 22;29(29):9380-9. doi: 10.1523/JNEUROSCI.0604-09.2009.
4
Distinct cortical migrations from the medial and lateral ganglionic eminences.
Development. 2001 Feb;128(3):353-63. doi: 10.1242/dev.128.3.353.
5
GABA regulates the multidirectional tangential migration of GABAergic interneurons in living neonatal mice.
PLoS One. 2011;6(12):e27048. doi: 10.1371/journal.pone.0027048. Epub 2011 Dec 13.
6
Early emergence of cortical interneuron diversity in the mouse embryo.
Science. 2018 Apr 6;360(6384):81-85. doi: 10.1126/science.aar6821. Epub 2018 Feb 22.
8
Multidirectional and multizonal tangential migration of GABAergic interneurons in the developing cerebral cortex.
Development. 2006 Jun;133(11):2167-76. doi: 10.1242/dev.02382. Epub 2006 May 3.
10
CTCF Governs the Identity and Migration of MGE-Derived Cortical Interneurons.
J Neurosci. 2019 Jan 2;39(1):177-192. doi: 10.1523/JNEUROSCI.3496-17.2018. Epub 2018 Oct 30.

引用本文的文献

2
Altered olfactory responses in Fmr1 KO mice.
Sci Rep. 2025 Jan 23;15(1):2952. doi: 10.1038/s41598-024-80000-5.
4
6
Distinct hyperactive RAS/MAPK alleles converge on common GABAergic interneuron core programs.
Development. 2023 May 15;150(10). doi: 10.1242/dev.201371. Epub 2023 May 31.
8
A method to estimate the cellular composition of the mouse brain from heterogeneous datasets.
PLoS Comput Biol. 2022 Dec 21;18(12):e1010739. doi: 10.1371/journal.pcbi.1010739. eCollection 2022 Dec.

本文引用的文献

2
Optimization of interneuron function by direct coupling of cell migration and axonal targeting.
Nat Neurosci. 2018 Jul;21(7):920-931. doi: 10.1038/s41593-018-0162-9. Epub 2018 Jun 18.
3
Cortical interneuron development: a tale of time and space.
Development. 2017 Nov 1;144(21):3867-3878. doi: 10.1242/dev.132852.
4
GABAergic Interneurons in the Neocortex: From Cellular Properties to Circuits.
Neuron. 2016 Jul 20;91(2):260-92. doi: 10.1016/j.neuron.2016.06.033.
5
Molecular control of two novel migratory paths for CGE-derived interneurons in the developing mouse brain.
Development. 2016 May 15;143(10):1753-65. doi: 10.1242/dev.131102. Epub 2016 Mar 31.
6
Sensory experience regulates cortical inhibition by inducing IGF1 in VIP neurons.
Nature. 2016 Mar 17;531(7594):371-5. doi: 10.1038/nature17187. Epub 2016 Mar 9.
9
Lhx6 directly regulates Arx and CXCR7 to determine cortical interneuron fate and laminar position.
Neuron. 2014 Apr 16;82(2):350-64. doi: 10.1016/j.neuron.2014.02.030.
10
Genetic programs controlling cortical interneuron fate.
Curr Opin Neurobiol. 2014 Jun;26(100):79-87. doi: 10.1016/j.conb.2013.12.012. Epub 2014 Jan 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验