Pharma Dev, Université de Toulouse, IRD, UPS, 31400 Toulouse, France.
Institut de Recherche en Informatique de Toulouse, Université de Toulouse, UPS, Toulouse 31400, France.
Anal Chem. 2020 Jul 21;92(14):9971-9981. doi: 10.1021/acs.analchem.0c01594. Epub 2020 Jul 10.
Untargeted metabolomics using liquid chromatography-mass spectrometry (LC-MS) is currently the gold-standard technique to determine the full chemical diversity in biological samples. However, this approach still has many limitations; notably, the difficulty of accurately estimating the number of unique metabolites profiled among the thousands of MS ion signals arising from chromatograms. Here, we describe a new workflow, MS-CleanR, based on the MS-DIAL/MS-FINDER suite, which tackles feature degeneracy and improves annotation rates. We show that implementation of MS-CleanR reduces the number of signals by nearly 80% while retaining 95% of unique metabolite features. Moreover, the annotation results from MS-FINDER can be ranked according to the database chosen by the user, which enhance identification accuracy. Application of MS-CleanR to the analysis of grown in three different conditions fostered class separation resulting from multivariate data analysis and led to annotation of 75% of the final features. The full workflow was applied to metabolomic profiles from three strains of the leguminous plant that have different susceptibilities to the oomycete pathogen . A group of glycosylated triterpenoids overrepresented in resistant lines were identified as candidate compounds conferring pathogen resistance. MS-CleanR is implemented through a Shiny interface for intuitive use by end-users (available at https://github.com/eMetaboHUB/MS-CleanR).
基于液相色谱-质谱联用技术(LC-MS)的非靶向代谢组学是目前用于确定生物样本中所有化学多样性的金标准技术。然而,这种方法仍然存在许多局限性;特别是,很难准确估计从色谱图中产生的数千个 MS 离子信号中所呈现的独特代谢物的数量。在这里,我们描述了一种新的工作流程 MS-CleanR,它基于 MS-DIAL/MS-FINDER 套件,可以解决特征退化和提高注释率的问题。我们表明,实施 MS-CleanR 可以将信号数量减少近 80%,同时保留 95%的独特代谢物特征。此外,MS-FINDER 的注释结果可以根据用户选择的数据库进行排序,从而提高鉴定准确性。将 MS-CleanR 应用于在三种不同条件下生长的研究中,促进了多元数据分析产生的分类分离,并对最终特征的 75%进行了注释。该完整工作流程应用于对具有不同对卵菌病原体易感性的豆科植物三个菌株的代谢组学图谱的分析。鉴定出一组在抗性株系中过量表达的糖基化三萜类化合物作为赋予病原体抗性的候选化合物。MS-CleanR 通过直观的 Shiny 界面实现,供最终用户使用(可在 https://github.com/eMetaboHUB/MS-CleanR 上获得)。