Suppr超能文献

一种用于FLASH放疗实时剂量测量的电离辐射声成像(iRAI)技术。

An ionizing radiation acoustic imaging (iRAI) technique for real-time dosimetric measurements for FLASH radiotherapy.

作者信息

Oraiqat Ibrahim, Zhang Wei, Litzenberg Dale, Lam Kwok, Ba Sunbul Noora, Moran Jean, Cuneo Kyle, Carson Paul, Wang Xueding, El Naqa Issam

机构信息

Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, 48109, USA.

H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA.

出版信息

Med Phys. 2020 Oct;47(10):5090-5101. doi: 10.1002/mp.14358. Epub 2020 Aug 16.

Abstract

PURPOSE

FLASH radiotherapy (FLASH-RT) is a novel irradiation modality with ultra-high dose rates (>40 Gy/s) that have shown tremendous promise for its ability to enhance normal tissue sparing while maintaining comparable tumor cell eradication toconventional radiotherapy (CONV-RT). Due to its extremely high dose rates, clinical translation of FLASH-RT is hampered by risky delivery and current limitations in dosimetric devices, which cannot accurately measure, in real time, dose at deeper tissue. This work aims to investigate ionizing radiation acoustic imaging (iRAI) as a promising image-guidance modality for real-time deep tissue dose measurements during FLASH-RT. The underlying hypothesis is that iRAI can enable mapping of dose deposition with respect to surrounding tissue with a single linear accelerator (linac) pulse precision in real time. In this work, the relationship between iRAI signal response and deposited dose was investigated as well as the feasibility of using a proof-of-concept dual-modality imaging system of ultrasound and iRAI for treatment beam co-localization with respect to underlying anatomy.

METHODS

Two experimental setups were used to study the feasibility of iRAI for FLASH-RT using 6 MeV electrons from a modified Varian Clinac. First, experiments were conducted using a single element focused transducer to take a series of point measurements in a gelatin phantom, which was compared with independent dose measurements using GAFchromic film. Secondly, an ultrasound and iRAI dual-modality imaging system utilizing a phased array transducer was used to take coregistered two-dimensional (2D) iRAI signal amplitude images as well as ultrasound B-mode images, to map the dose deposition with respect to surrounding anatomy in an ex vivo rabbit liver model with a single linac pulse precision.

RESULTS

Using a single element transducer, iRAI measurements showed a highly linear relationship between the iRAI signal amplitude and the linac dose per pulse (r  = 0.9998) with a repeatability precision of 1% and a dose resolution error <2.5% in a homogenous phantom when compared to GAFchromic film dose measurements. These phantom results were used to develop a calibration curve between the iRAI signal response and the delivered dose per pulse. Subsequently, a normalized depth dose curve was generated that agreed with film measurements with an RMSE of 0.0243, using correction factors to account for deviations in measurement conditions with respect to calibration. Experiments on the ex-vivo rabbit liver model demonstrated that a 2D iRAI image could be generated successfully from a single linac pulse, which was fused with the B-mode ultrasound image to provide information about the beam position with respect to surrounding anatomy in real time.

CONCLUSION

This work demonstrates the potential of using iRAI for real-time deep tissue dosimetry in FLASH-RT. Our results show that iRAI signals are linear with dose and can accurately map the delivered radiation dose with respect to soft tissue anatomy. With its ability to measure dose for individual linac pulses at any location within surrounding soft tissue while identifying where that dose is being delivered anatomically in real time, iRAI can be an indispensable tool to enable safe and efficient clinical translation of FLASH-RT.

摘要

目的

FLASH放疗(FLASH-RT)是一种新型的放射治疗方式,具有超高剂量率(>40 Gy/s),在提高正常组织保护能力的同时,对肿瘤细胞的杀灭效果与传统放疗(CONV-RT)相当,展现出巨大的潜力。由于其极高的剂量率,FLASH-RT的临床转化受到风险递送以及剂量测量设备当前局限性的阻碍,这些设备无法实时准确测量深部组织的剂量。本研究旨在探讨电离辐射声成像(iRAI)作为一种有前景的图像引导方式,用于在FLASH-RT期间进行实时深部组织剂量测量。潜在假设是iRAI能够以单个直线加速器(直线加速器)脉冲精度实时绘制相对于周围组织的剂量沉积图。在本研究中,研究了iRAI信号响应与沉积剂量之间的关系,以及使用超声和iRAI的概念验证双模态成像系统将治疗束相对于潜在解剖结构进行共定位的可行性。

方法

使用两种实验设置来研究iRAI用于FLASH-RT的可行性,使用来自改良瓦里安直线加速器的6 MeV电子。首先,使用单个元件聚焦换能器在明胶模型中进行一系列点测量实验,并与使用GAFchromic膜的独立剂量测量进行比较。其次,利用相控阵换能器的超声和iRAI双模态成像系统采集配准的二维(2D)iRAI信号幅度图像以及超声B模式图像,以单个直线加速器脉冲精度在离体兔肝模型中绘制相对于周围解剖结构的剂量沉积图。

结果

使用单个元件换能器时,iRAI测量显示iRAI信号幅度与直线加速器每个脉冲的剂量之间具有高度线性关系(r = 0.9998),在均匀模型中与GAFchromic膜剂量测量相比,重复性精度为1%,剂量分辨率误差<2.5%。这些模型结果用于建立iRAI信号响应与每个脉冲递送剂量之间的校准曲线。随后,生成归一化深度剂量曲线,其与膜测量结果一致,均方根误差为0.0243,使用校正因子来考虑测量条件相对于校准的偏差。在离体兔肝模型上的实验表明,可从单个直线加速器脉冲成功生成二维iRAI图像,该图像与B模式超声图像融合,以实时提供关于束相对于周围解剖结构的位置信息。

结论

本研究证明了在FLASH-RT中使用iRAI进行实时深部组织剂量测定的潜力。我们的结果表明,iRAI信号与剂量呈线性关系,能够准确绘制相对于软组织解剖结构的递送辐射剂量。iRAI能够在周围软组织内的任何位置测量单个直线加速器脉冲的剂量,同时实时确定该剂量在解剖学上的递送位置,它可以成为实现FLASH-RT安全、高效临床转化的不可或缺的工具。

相似文献

引用本文的文献

5
Emergence of FLASH‑radiotherapy across the last 50 years (Review).过去50年中FLASH放疗的出现(综述)
Oncol Lett. 2024 Oct 11;28(6):602. doi: 10.3892/ol.2024.14735. eCollection 2024 Dec.
7
Ring artifacts removal in X-ray-induced acoustic computed tomography.X射线诱导声学计算机断层扫描中的环形伪影去除
J Innov Opt Health Sci. 2022 May;15(3). doi: 10.1142/s1793545822500171. Epub 2022 Mar 30.
9
Harnessing progress in radiotherapy for global cancer control.利用放疗进展助力全球癌症控制。
Nat Cancer. 2023 Sep;4(9):1228-1238. doi: 10.1038/s43018-023-00619-7. Epub 2023 Sep 25.

本文引用的文献

3
Treatment of a first patient with FLASH-radiotherapy.首例 FLASH 放疗患者的治疗。
Radiother Oncol. 2019 Oct;139:18-22. doi: 10.1016/j.radonc.2019.06.019. Epub 2019 Jul 11.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验