Suppr超能文献

一种基于反馈自适应加权密集网络的可信医学图像超分辨率方法。

A trusted medical image super-resolution method based on feedback adaptive weighted dense network.

作者信息

Chen Lihui, Yang Xiaomin, Jeon Gwanggil, Anisetti Marco, Liu Kai

机构信息

College of Electronics and Information Engineering, Sichuan University, Chengdu, Sichuan 610065, China.

College of Electronics and Information Engineering, Sichuan University, Chengdu, Sichuan 610065, China.

出版信息

Artif Intell Med. 2020 Jun;106:101857. doi: 10.1016/j.artmed.2020.101857. Epub 2020 May 16.

Abstract

High-resolution (HR) medical images are preferred in clinical diagnoses and subsequent analysis. However, the acquisition of HR medical images is easily affected by hardware devices. As an effective and trusted alternative method, the super-resolution (SR) technology is introduced to improve the image resolution. Compared with traditional SR methods, the deep learning-based SR methods can obtain more clear and trusted HR images. In this paper, we propose a trusted deep convolutional neural network-based SR method named feedback adaptive weighted dense network (FAWDN) for HR medical image reconstruction. Specifically, the proposed FAWDN can transmit the information of the output image to the low-level features by a feedback connection. To explore advanced feature representation and reduce the feature redundancy in dense blocks, an adaptive weighted dense block (AWDB) is introduced to adaptively select the informative features. Experimental results demonstrate that our FAWDN outperforms the state-of-the-art image SR methods and can obtain more clear and trusted medical images than comparative methods.

摘要

高分辨率(HR)医学图像在临床诊断及后续分析中更受青睐。然而,HR医学图像的采集很容易受到硬件设备的影响。作为一种有效且可靠的替代方法,引入了超分辨率(SR)技术来提高图像分辨率。与传统的SR方法相比,基于深度学习的SR方法能够获得更清晰、更可靠的HR图像。在本文中,我们提出了一种基于可信深度卷积神经网络的SR方法,称为反馈自适应加权密集网络(FAWDN),用于HR医学图像重建。具体而言,所提出的FAWDN可以通过反馈连接将输出图像的信息传输到低级特征。为了探索先进的特征表示并减少密集块中的特征冗余,引入了自适应加权密集块(AWDB)来自适应地选择信息性特征。实验结果表明,我们的FAWDN优于当前最先进的图像SR方法,并且比对比方法能够获得更清晰、更可靠的医学图像。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验