Suppr超能文献

基于反馈注意力网络的边缘增强图像超分辨率方法。

Edge-Enhanced with Feedback Attention Network for Image Super-Resolution.

机构信息

School of Microelectronics and Communication Engineering, Chongqing University, Chongqing 400044, China.

出版信息

Sensors (Basel). 2021 Mar 15;21(6):2064. doi: 10.3390/s21062064.

Abstract

Significant progress has been made in single image super-resolution (SISR) based on deep convolutional neural networks (CNNs). The attention mechanism can capture important features well, and the feedback mechanism can realize the fine-tuning of the output to the input. However, they have not been reasonably applied in the existing deep learning-based SISR methods. Additionally, the results of the existing methods still have serious artifacts and edge blurring. To address these issues, we proposed an Edge-enhanced with Feedback Attention Network for image super-resolution (EFANSR), which comprises three parts. The first part is an SR reconstruction network, which adaptively learns the features of different inputs by integrating channel attention and spatial attention blocks to achieve full utilization of the features. We also introduced feedback mechanism to feed high-level information back to the input and fine-tune the input in the dense spatial and channel attention block. The second part is the edge enhancement network, which obtains a sharp edge through adaptive edge enhancement processing on the output of the first SR network. The final part merges the outputs of the first two parts to obtain the final edge-enhanced SR image. Experimental results show that our method achieves performance comparable to the state-of-the-art methods with lower complexity.

摘要

基于深度卷积神经网络(CNN)的单幅图像超分辨率(SISR)已经取得了重大进展。注意力机制可以很好地捕捉重要特征,反馈机制可以实现对输入到输出的精细调整。然而,它们在现有的基于深度学习的 SISR 方法中并没有得到合理的应用。此外,现有的方法的结果仍然存在严重的伪影和边缘模糊。为了解决这些问题,我们提出了一种用于图像超分辨率的带反馈注意力的边缘增强网络(EFANSR),它包括三个部分。第一部分是 SR 重建网络,通过集成通道注意力和空间注意力块自适应地学习不同输入的特征,实现特征的充分利用。我们还引入了反馈机制,将高层信息反馈给输入,并在密集的空间和通道注意力块中对输入进行微调。第二部分是边缘增强网络,通过对第一 SR 网络输出的自适应边缘增强处理获得清晰的边缘。最后一部分合并前两部分的输出,得到最终的边缘增强 SR 图像。实验结果表明,我们的方法在复杂度较低的情况下,性能可与最先进的方法相媲美。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e4e/7999349/c6e428d0d1ab/sensors-21-02064-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验