Paris-Saclay University, Institute of Neuroscience (NeuroPSI), Centre National de la Recherche Scientifique, Gif-sur-Yvette, 91198, France.
J Physiol. 2020 Sep;598(18):3957-3972. doi: 10.1113/JP279452. Epub 2020 Jul 9.
We simulate the unitary local field potential (uLFP) generated in the hippocampus CA3, using morphologically detailed models. The model suggests that cancelling effects between apical and basal dendritic synapses explain the low amplitude of excitatory uLFPs. Inhibitory synapses around the soma do not cancel and could explain the high-amplitude inhibitory uLFPs. These results suggest that somatic inhibition constitutes a strong component of LFPs, which may explain a number of experimental observations.
Synaptic currents represent a major contribution to the local field potential (LFP) in brain tissue, but the respective contribution of excitatory and inhibitory synapses is not known. Here, we provide estimates of this contribution by using computational models of hippocampal pyramidal neurons, constrained by in vitro recordings. We focus on the unitary LFP (uLFP) generated by single neurons in the CA3 region of the hippocampus. We first reproduce experimental results for hippocampal basket cells, and in particular how inhibitory uLFP are distributed within hippocampal layers. Next, we calculate the uLFP generated by pyramidal neurons, using morphologically reconstructed CA3 pyramidal cells. The model shows that the excitatory uLFP is of small amplitude, smaller than inhibitory uLFPs. Indeed, when the two are simulated together, inhibitory uLFPs mask excitatory uLFPs, which might create the illusion that the inhibitory field is generated by pyramidal cells. These results provide an explanation for the observation that excitatory and inhibitory uLFPs are of the same polarity, in vivo and in vitro. These results suggest that somatic inhibitory currents are large contributors to the LFP, which is important information for interpreting this signal. Finally, the results of our model might form the basis of a simple method to compute the LFP, which could be applied to point neurons for each cell type, thus providing a simple biologically grounded method for calculating LFPs from neural networks. In conclusion, computational models constrained by in vitro recordings suggest that: (1) Excitatory uLFPs are of smaller amplitude than inhibitory uLFPs. (2) Inhibitory uLFPs form the major contribution to LFPs. (3) uLFPs can be used as a simple model to generate LFPs from spiking networks.
我们使用形态学详细模型模拟海马 CA3 中产生的单位局部场电位 (uLFP)。该模型表明,树突顶和基底树突突触之间的抵消效应解释了兴奋性 uLFPs 的低振幅。胞体周围的抑制性突触不会抵消,并可能解释高振幅的抑制性 uLFPs。这些结果表明,体细胞抑制构成 LFPs 的一个重要组成部分,这可以解释许多实验观察结果。
突触电流是脑组织结构中局部场电位 (LFP) 的主要贡献者,但兴奋性和抑制性突触的相对贡献尚不清楚。在这里,我们通过使用海马锥体神经元的计算模型并结合体外记录来提供这种贡献的估计。我们专注于海马 CA3 区单个神经元产生的单位局部场电位 (uLFP)。我们首先再现了海马篮状细胞的实验结果,特别是抑制性 uLFP 在海马层内的分布情况。接下来,我们使用形态重建的 CA3 锥体细胞计算了锥体神经元产生的 uLFP。该模型表明,兴奋性 uLFP 的幅度较小,小于抑制性 uLFPs。实际上,当两者一起模拟时,抑制性 uLFPs 会掩盖兴奋性 uLFPs,这可能会造成抑制性场由锥体细胞产生的错觉。这些结果为观察到体内和体外的兴奋性和抑制性 uLFPs 具有相同极性提供了解释。这些结果表明,体细胞抑制电流是 LFP 的重要贡献者,这对于解释该信号非常重要。最后,我们模型的结果可能为计算 LFP 的简单方法奠定基础,该方法可以应用于每个细胞类型的点状神经元,从而为从神经网络计算 LFPs 提供一种简单的基于生物学的方法。总之,受体外记录约束的计算模型表明:(1) 兴奋性 uLFPs 的幅度小于抑制性 uLFPs。(2) 抑制性 uLFPs 是 LFPs 的主要贡献者。(3) uLFPs 可以用作从尖峰网络生成 LFPs 的简单模型。