Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany.
Department of Biology, Humboldt-Universität zu Berlin, Berlin, Germany.
Nat Struct Mol Biol. 2020 Aug;27(8):717-725. doi: 10.1038/s41594-020-0450-4. Epub 2020 Jun 29.
Translation has a fundamental function in defining the fate of the transcribed genome. RNA-sequencing (RNA-seq) data enable the quantification of complex transcript mixtures, often detecting several transcript isoforms of unknown functions for one gene. Here, we describe ORFquant, a method to annotate and quantify translation at the level of single open reading frames (ORFs), using information from Ribo-seq data. By developing an approach for transcript filtering, we quantify translation transcriptome-wide, revealing translated ORFs on multiple isoforms per gene. For most genes, one ORF represents the dominant translation product, but we also detect genes with translated ORFs on multiple transcript isoforms, including targets of RNA surveillance mechanisms. Measuring translation across human cell lines reveals the extent of gene-specific differences in protein production, supported by steady-state protein abundance estimates. Computational analysis of Ribo-seq data with ORFquant (https://github.com/lcalviell/ORFquant) provides insights into the heterogeneous functions of complex transcriptomes.
翻译在定义转录基因组的命运方面具有重要作用。RNA 测序(RNA-seq)数据能够定量复杂的转录混合物,通常能够检测到一个基因的多个未知功能的转录本异构体。在这里,我们描述了 ORFquant,这是一种使用核糖体测序(Ribo-seq)数据信息注释和定量单个开放阅读框(ORF)翻译的方法。通过开发一种转录本过滤方法,我们在全转录组范围内定量翻译,揭示了每个基因的多个异构体上翻译的 ORF。对于大多数基因,一个 ORF 代表主要的翻译产物,但我们也检测到在多个转录本异构体上具有翻译 ORF 的基因,包括 RNA 监测机制的靶标。在人类细胞系中测量翻译,通过稳态蛋白丰度估计支持,揭示了蛋白质产生的基因特异性差异的程度。使用 ORFquant(https://github.com/lcalviell/ORFquant)对 Ribo-seq 数据进行计算分析,为理解复杂转录组的异质功能提供了线索。