Life Sciences Group, Institut Laue-Langevin, 71 Avenue des Martyrs, Grenoble 38000, France.
Partnership for Structural Biology (PSB), 71 Avenue des Martyrs, Grenoble 38000, France.
Glycobiology. 2021 Feb 9;31(2):151-158. doi: 10.1093/glycob/cwaa059.
l-Fucose and l-fucose-containing polysaccharides, glycoproteins or glycolipids play an important role in a variety of biological processes. l-Fucose-containing glycoconjugates have been implicated in many diseases including cancer and rheumatoid arthritis. Interest in fucose and its derivatives is growing in cancer research, glyco-immunology, and the study of host-pathogen interactions. l-Fucose can be extracted from bacterial and algal polysaccharides or produced (bio)synthetically. While deuterated glucose and galactose are available, and are of high interest for metabolic studies and biophysical studies, deuterated fucose is not easily available. Here, we describe the production of perdeuterated l-fucose, using glyco-engineered Escherichia coli in a bioreactor with the use of a deuterium oxide-based growth medium and a deuterated carbon source. The final yield was 0.2 g L-1 of deuterated sugar, which was fully characterized by mass spectrometry and nuclear magnetic resonance spectroscopy. We anticipate that the perdeuterated fucose produced in this way will have numerous applications in structural biology where techniques such as NMR, solution neutron scattering and neutron crystallography are widely used. In the case of neutron macromolecular crystallography, the availability of perdeuterated fucose can be exploited in identifying the details of its interaction with protein receptors and notably the hydrogen bonding network around the carbohydrate binding site.
岩藻糖和含有岩藻糖的多糖、糖蛋白或糖脂在多种生物过程中发挥着重要作用。含有岩藻糖的糖缀合物与许多疾病有关,包括癌症和类风湿关节炎。人们对岩藻糖及其衍生物在癌症研究、糖免疫和宿主-病原体相互作用研究中的兴趣日益浓厚。岩藻糖可以从细菌和藻类多糖中提取,也可以通过(生物)合成生产。虽然氘代葡萄糖和半乳糖可用,并且对代谢研究和生物物理研究非常有兴趣,但氘代岩藻糖不容易获得。在这里,我们描述了使用糖工程大肠杆菌在生物反应器中使用基于重水的生长培养基和氘代碳源生产全氘代 l-岩藻糖的过程。最终产量为 0.2 g/L 的氘代糖,其通过质谱和核磁共振波谱进行了充分表征。我们预计以这种方式生产的全氘代岩藻糖将在结构生物学中具有许多应用,其中广泛使用 NMR、溶液中子散射和中子晶体学等技术。在中子大分子晶体学中,可以利用全氘代岩藻糖来确定其与蛋白质受体相互作用的细节,特别是碳水化合物结合位点周围的氢键网络。