Suppr超能文献

深度学习在智能医疗系统中多等级脑肿瘤分类中的应用:前瞻性调查。

Deep Learning for Multigrade Brain Tumor Classification in Smart Healthcare Systems: A Prospective Survey.

出版信息

IEEE Trans Neural Netw Learn Syst. 2021 Feb;32(2):507-522. doi: 10.1109/TNNLS.2020.2995800. Epub 2021 Feb 4.

Abstract

Brain tumor is one of the most dangerous cancers in people of all ages, and its grade recognition is a challenging problem for radiologists in health monitoring and automated diagnosis. Recently, numerous methods based on deep learning have been presented in the literature for brain tumor classification (BTC) in order to assist radiologists for a better diagnostic analysis. In this overview, we present an in-depth review of the surveys published so far and recent deep learning-based methods for BTC. Our survey covers the main steps of deep learning-based BTC methods, including preprocessing, features extraction, and classification, along with their achievements and limitations. We also investigate the state-of-the-art convolutional neural network models for BTC by performing extensive experiments using transfer learning with and without data augmentation. Furthermore, this overview describes available benchmark data sets used for the evaluation of BTC. Finally, this survey does not only look into the past literature on the topic but also steps on it to delve into the future of this area and enumerates some research directions that should be followed in the future, especially for personalized and smart healthcare.

摘要

脑肿瘤是各年龄段人群中最危险的癌症之一,其分级识别是健康监测和自动诊断中放射科医生面临的一个具有挑战性的问题。最近,文献中提出了许多基于深度学习的方法,用于脑肿瘤分类(BTC),以帮助放射科医生进行更好的诊断分析。在本综述中,我们对迄今为止发表的调查和最近基于深度学习的 BTC 方法进行了深入的回顾。我们的综述涵盖了基于深度学习的 BTC 方法的主要步骤,包括预处理、特征提取和分类,以及它们的优缺点。我们还通过使用带和不带数据增强的迁移学习进行广泛的实验,研究了用于 BTC 的最先进的卷积神经网络模型。此外,本综述还描述了用于评估 BTC 的可用基准数据集。最后,本综述不仅回顾了该主题的过去文献,还深入探讨了该领域的未来,并列举了一些未来应该遵循的研究方向,特别是对于个性化和智能医疗保健。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验