Suppr超能文献

基于深度学习和格子玻尔兹曼模型的 MRI 中海马自动分割。

A Combined Deep-Learning and Lattice Boltzmann Model for Segmentation of the Hippocampus in MRI.

机构信息

School of Communication and Information Engineering, Shanghai University, Shanghai 200444, China.

School of Electrical Engineering, Binzhou University, Binzhou 256600, China.

出版信息

Sensors (Basel). 2020 Jun 28;20(13):3628. doi: 10.3390/s20133628.

Abstract

Segmentation of the hippocampus (HC) in magnetic resonance imaging (MRI) is an essential step for diagnosis and monitoring of several clinical situations such as Alzheimer's disease (AD), schizophrenia and epilepsy. Automatic segmentation of HC structures is challenging due to their small volume, complex shape, low contrast and discontinuous boundaries. The active contour model (ACM) with a statistical shape prior is robust. However, it is difficult to build a shape prior that is general enough to cover all possible shapes of the HC and that suffers the problems of complicated registration of the shape prior and the target object and of low efficiency. In this paper, we propose a semi-automatic model that combines a deep belief network (DBN) and the lattice Boltzmann (LB) method for the segmentation of HC. The training process of DBN consists of unsupervised bottom-up training and supervised training of a top restricted Boltzmann machine (RBM). Given an input image, the trained DBN is utilized to infer the patient-specific shape prior of the HC. The specific shape prior is not only used to determine the initial contour, but is also introduced into the LB model as part of the external force to refine the segmentation. We used a subset of OASIS-1 as the training set and the preliminary release of EADC-ADNI as the testing set. The segmentation results of our method have good correlation and consistency with the manual segmentation results.

摘要

磁共振成像(MRI)中海马(HC)的分割是诊断和监测阿尔茨海默病(AD)、精神分裂症和癫痫等多种临床情况的重要步骤。由于 HC 结构体积小、形状复杂、对比度低且边界不连续,因此自动分割 HC 结构具有挑战性。基于统计形状先验的主动轮廓模型(ACM)具有鲁棒性。然而,构建一个足够通用的形状先验来覆盖 HC 的所有可能形状,并解决形状先验和目标对象的复杂配准以及效率低下的问题是很困难的。在本文中,我们提出了一种结合深度置信网络(DBN)和晶格玻尔兹曼(LB)方法的半自动模型,用于 HC 的分割。DBN 的训练过程包括无监督自下而上的训练和受限玻尔兹曼机(RBM)的监督训练。给定输入图像,训练好的 DBN 用于推断患者特定的 HC 形状先验。该特定形状先验不仅用于确定初始轮廓,还被引入 LB 模型作为外力的一部分,以细化分割。我们使用 OASIS-1 的一个子集作为训练集,EADC-ADNI 的初步发布作为测试集。我们方法的分割结果与手动分割结果具有良好的相关性和一致性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b55/7374374/8c8adf0ef91c/sensors-20-03628-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验