Singh Harpreet, Kaur Ravneet, Saluja Satish, Cho Su Jin, Kaur Avneet, Pandey Ashish Kumar, Gupta Shubham, Das Ritu, Kumar Praveen, Palma Jonathan, Yadav Gautam, Sun Yao
Child Health Imprints (CHIL) Pte. Ltd, Singapore, Singapore.
Department of Neonatology, Sir Ganga Ram Hospital, New Delhi, India.
JAMIA Open. 2019 Nov 25;3(1):21-30. doi: 10.1093/jamiaopen/ooz064. eCollection 2020 Apr.
Critical care units (CCUs) with extensive use of various monitoring devices generate massive data. To utilize the valuable information of these devices; data are collected and stored using systems like clinical information system and laboratory information management system. These systems are proprietary, allow limited access to their database and, have the vendor-specific clinical implementation. In this study, we focus on developing an open-source web-based meta-data repository for CCU representing stay of the patient with relevant details.
After developing the web-based open-source repository named data dictionary (DD), we analyzed prospective data from 2 sites for 4 months for data quality dimensions (completeness, timeliness, validity, accuracy, and consistency), morbidity, and clinical outcomes. We used a regression model to highlight the significance of practice variations linked with various quality indicators.
DD with 1555 fields (89.6% categorical and 11.4% text fields) is presented to cover the clinical workflow of a CCU. The overall quality of 1795 patient days data with respect to standard quality dimensions is 87%. The data exhibit 88% completeness, 97% accuracy, 91% timeliness, and 94% validity in terms of representing CCU processes. The data scores only 67% in terms of consistency. Furthermore, quality indicators and practice variations are strongly correlated ( < 0.05).
This study documents DD for standardized data collection in CCU. DD provides robust data and insights for audit purposes and pathways for CCU to target practice improvements leading to specific quality improvements.
大量使用各种监测设备的重症监护病房(CCU)会产生海量数据。为了利用这些设备的宝贵信息,数据通过临床信息系统和实验室信息管理系统等进行收集和存储。这些系统是专有的,对其数据库的访问受限,并且具有特定供应商的临床实施方案。在本研究中,我们专注于开发一个基于网络的开源元数据存储库,用于CCU,以呈现患者住院期间的相关详细信息。
在开发了名为数据字典(DD)的基于网络的开源存储库之后,我们分析了来自2个地点的4个月前瞻性数据,以评估数据质量维度(完整性、及时性、有效性、准确性和一致性)、发病率和临床结局。我们使用回归模型来突出与各种质量指标相关的实践差异的重要性。
呈现了包含1555个字段(89.6%为分类字段,11.4%为文本字段)的DD,以涵盖CCU的临床工作流程。就标准质量维度而言,1795个患者住院日数据的整体质量为87%。在表示CCU流程方面,数据的完整性为88%、准确性为97%、及时性为91%、有效性为94%。在一致性方面,数据得分仅为67%。此外,质量指标与实践差异密切相关(<0.05)。
本研究记录了用于CCU标准化数据收集的DD。DD为审核目的提供了可靠的数据和见解,为CCU提供了针对实践改进以实现特定质量提升的途径。