Suppr超能文献

重症监护病房中基于高清表型的死亡率预测模型的开发与验证

Development and validation of high definition phenotype-based mortality prediction in critical care units.

作者信息

Sun Yao, Kaur Ravneet, Gupta Shubham, Paul Rahul, Das Ritu, Cho Su Jin, Anand Saket, Boutilier Justin J, Saria Suchi, Palma Jonathan, Saluja Satish, McAdams Ryan M, Kaur Avneet, Yadav Gautam, Singh Harpreet

机构信息

Division of Neonatology, Department of Pediatrics, University of California San Francisco, San Francisco, California, USA.

Research and Development, Child Health Imprints (CHIL) Pte. Ltd., Singapore.

出版信息

JAMIA Open. 2021 Mar 25;4(1):ooab004. doi: 10.1093/jamiaopen/ooab004. eCollection 2021 Jan.

Abstract

OBJECTIVES

The objectives of this study are to construct the high definition phenotype (HDP), a novel time-series data structure composed of both primary and derived parameters, using heterogeneous clinical sources and to determine whether different predictive models can utilize the HDP in the neonatal intensive care unit (NICU) to improve neonatal mortality prediction in clinical settings.

MATERIALS AND METHODS

A total of 49 primary data parameters were collected from July 2018 to May 2020 from eight level-III NICUs. From a total of 1546 patients, 757 patients were found to contain sufficient fixed, intermittent, and continuous data to create HDPs. Two different predictive models utilizing the HDP, one a logistic regression model (LRM) and the other a deep learning long-short-term memory (LSTM) model, were constructed to predict neonatal mortality at multiple time points during the patient hospitalization. The results were compared with previous illness severity scores, including SNAPPE, SNAPPE-II, CRIB, and CRIB-II.

RESULTS

A HDP matrix, including 12 221 536 minutes of patient stay in NICU, was constructed. The LRM model and the LSTM model performed better than existing neonatal illness severity scores in predicting mortality using the area under the receiver operating characteristic curve (AUC) metric. An ablation study showed that utilizing continuous parameters alone results in an AUC score of >80% for both LRM and LSTM, but combining fixed, intermittent, and continuous parameters in the HDP results in scores >85%. The probability of mortality predictive score has recall and precision of 0.88 and 0.77 for the LRM and 0.97 and 0.85 for the LSTM.

CONCLUSIONS AND RELEVANCE

The HDP data structure supports multiple analytic techniques, including the statistical LRM approach and the machine learning LSTM approach used in this study. LRM and LSTM predictive models of neonatal mortality utilizing the HDP performed better than existing neonatal illness severity scores. Further research is necessary to create HDP-based clinical decision tools to detect the early onset of neonatal morbidities.

摘要

目的

本研究的目的是利用异质性临床来源构建高清表型(HDP),这是一种由主要参数和派生参数组成的新型时间序列数据结构,并确定不同的预测模型能否在新生儿重症监护病房(NICU)中利用HDP来改善临床环境下的新生儿死亡率预测。

材料与方法

2018年7月至2020年5月期间,从8个三级NICU收集了总共49个主要数据参数。在总共1546例患者中,发现757例患者包含足够的固定、间歇和连续数据以创建HDP。构建了两种利用HDP的不同预测模型,一种是逻辑回归模型(LRM),另一种是深度学习长短期记忆(LSTM)模型,以预测患者住院期间多个时间点的新生儿死亡率。将结果与先前的疾病严重程度评分进行比较,包括SNAPPE、SNAPPE-II、CRIB和CRIB-II。

结果

构建了一个HDP矩阵,其中包括患者在NICU停留的12221536分钟。使用受试者操作特征曲线(AUC)下的面积指标,LRM模型和LSTM模型在预测死亡率方面比现有的新生儿疾病严重程度评分表现更好。一项消融研究表明,仅使用连续参数时,LRM和LSTM的AUC得分均>80%,但在HDP中结合固定、间歇和连续参数会使得分>85%。死亡率预测评分的概率,LRM的召回率和精确率分别为0.88和0.77,LSTM的召回率和精确率分别为0.97和0.85。

结论与意义

HDP数据结构支持多种分析技术,包括本研究中使用的统计LRM方法和机器学习LSTM方法。利用HDP的新生儿死亡率LRM和LSTM预测模型比现有的新生儿疾病严重程度评分表现更好。有必要进行进一步研究,以创建基于HDP的临床决策工具,以检测新生儿疾病的早期发作。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28cd/7991779/b40b2ce5f243/ooab004f1.jpg

相似文献

1
Development and validation of high definition phenotype-based mortality prediction in critical care units.
JAMIA Open. 2021 Mar 25;4(1):ooab004. doi: 10.1093/jamiaopen/ooab004. eCollection 2021 Jan.
2
Neonatal mortality risk assessment using SNAPPE- II score in a neonatal intensive care unit.
BMC Pediatr. 2019 Aug 13;19(1):279. doi: 10.1186/s12887-019-1660-y.
8
SNAPPE II Score as a Predictor of Neonatal Mortality in NICU at a Tertiary Care Hospital in Pakistan.
Cureus. 2021 Dec 15;13(12):e20427. doi: 10.7759/cureus.20427. eCollection 2021 Dec.
9
SNAPPE-II (Score for Neonatal Acute Physiology with Perinatal Extension-II) in Predicting Mortality and Morbidity in NICU.
J Clin Diagn Res. 2015 Oct;9(10):SC10-2. doi: 10.7860/JCDR/2015/14848.6677. Epub 2015 Oct 1.
10
Histologic chorioamnionitis and severity of illness in very low birth weight newborns.
Pediatr Crit Care Med. 2005 May;6(3):298-302. doi: 10.1097/01.PCC.0000160658.35437.65.

引用本文的文献

2
5
Hourly Kinetics of Critical Organ Dysfunction in Extremely Preterm Infants.
Am J Respir Crit Care Med. 2022 Jan 1;205(1):75-87. doi: 10.1164/rccm.202106-1359OC.

本文引用的文献

1
Development of data dictionary for neonatal intensive care unit: advancement towards a better critical care unit.
JAMIA Open. 2019 Nov 25;3(1):21-30. doi: 10.1093/jamiaopen/ooz064. eCollection 2020 Apr.
2
Mortality prediction models in the adult critically ill: A scoping review.
Acta Anaesthesiol Scand. 2020 Apr;64(4):424-442. doi: 10.1111/aas.13527. Epub 2019 Dec 26.
3
A deep learning model for real-time mortality prediction in critically ill children.
Crit Care. 2019 Aug 14;23(1):279. doi: 10.1186/s13054-019-2561-z.
4
Multitask learning and benchmarking with clinical time series data.
Sci Data. 2019 Jun 17;6(1):96. doi: 10.1038/s41597-019-0103-9.
6
Making care better in the pediatric intensive care unit.
Transl Pediatr. 2018 Oct;7(4):267-274. doi: 10.21037/tp.2018.09.10.
8
Real-time mortality prediction in the Intensive Care Unit.
AMIA Annu Symp Proc. 2018 Apr 16;2017:994-1003. eCollection 2017.
9
Applying Machine Learning to Pediatric Critical Care Data.
Pediatr Crit Care Med. 2018 Jul;19(7):599-608. doi: 10.1097/PCC.0000000000001567.
10
An Interpretable Machine Learning Model for Accurate Prediction of Sepsis in the ICU.
Crit Care Med. 2018 Apr;46(4):547-553. doi: 10.1097/CCM.0000000000002936.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验