Suppr超能文献

洞察无形:液晶在气体传感技术中的作用。

Seeing the Unseen: The Role of Liquid Crystals in Gas-Sensing Technologies.

作者信息

Esteves Carina, Ramou Efthymia, Porteira Ana Raquel Pina, Barbosa Arménio Jorge Moura, Roque Ana Cecília Afonso

机构信息

UCIBIO, Departamento de Química Faculdade de Ciências e Tecnologia Universidade Nova de Lisboa Caparica 2829-516, Portugal.

出版信息

Adv Opt Mater. 2020 Jun 4;8(11):1902117. doi: 10.1002/adom.201902117. Epub 2020 Apr 8.

Abstract

Fast, real-time detection of gases and volatile organic compounds (VOCs) is an emerging research field relevant to most aspects of modern society, from households to health facilities, industrial units, and military environments. Sensor features such as high sensitivity, selectivity, fast response, and low energy consumption are essential. Liquid crystal (LC)-based sensors fulfill these requirements due to their chemical diversity, inherent self-assembly potential, and reversible molecular order, resulting in tunable stimuliresponsive soft materials. Sensing platforms utilizing thermotropic uniaxial systems-nematic and smectic-that exploit not only interfacial phenomena, but also changes in the LC bulk, are demonstrated. Special focus is given to the different interaction mechanisms and tuned selectivity toward gas and VOC analytes. Furthermore, the different experimental methods used to transduce the presence of chemical analytes into macroscopic signals are discussed and detailed examples are provided. Future perspectives and trends in the field, in particular the opportunities for LC-based advanced materials in artificial olfaction, are also discussed.

摘要

快速、实时检测气体和挥发性有机化合物(VOCs)是一个新兴的研究领域,与现代社会的大多数方面相关,从家庭到卫生设施、工业单位和军事环境。诸如高灵敏度、选择性、快速响应和低能耗等传感器特性至关重要。基于液晶(LC)的传感器由于其化学多样性、固有的自组装潜力和可逆的分子排列,可产生可调节的刺激响应软材料,从而满足这些要求。展示了利用热致单轴系统(向列相和近晶相)的传感平台,这些系统不仅利用界面现象,还利用液晶本体的变化。特别关注了不同的相互作用机制以及对气体和VOC分析物的调谐选择性。此外,还讨论了用于将化学分析物的存在转化为宏观信号的不同实验方法,并提供了详细示例。还讨论了该领域的未来前景和趋势,特别是基于液晶的先进材料在人工嗅觉方面的机遇。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验