Department of Neurosurgery, the First Hospital of Jilin University, Changchun, Jilin, 130021, China.
Department of VIP Unit, China-Japan Union Hospital of Jilin University, Changchun, 130033, China.
Sci Rep. 2020 Jul 2;10(1):10847. doi: 10.1038/s41598-020-67114-2.
The rupture of atherosclerotic plaques is essential for cardiovascular and cerebrovascular events. Identification of the key genes related to plaque rupture is an important approach to predict the status of plaque and to prevent the clinical events. In the present study, we downloaded two expression profiles related to the rupture of atherosclerotic plaques (GSE41571 and GSE120521) from GEO database. 11 samples in GSE41571 were used to identify the differentially expressed genes (DEGs) and to construct the weighted gene correlation network analysis (WGCNA) by R software. The gene oncology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment tool in DAVID website, and the Protein-protein interactions in STRING website were used to predict the functions and mechanisms of genes. Furthermore, we mapped the hub genes extracted from WGCNA to DEGs, and constructed a sub-network using Cytoscape 3.7.2. The key genes were identified by the molecular complex detection (MCODE) in Cytoscape. Further validation was conducted using dataset GSE120521 and human carotid endarterectomy (CEA) plaques. Results: In our study, 868 DEGs were identified in GSE41571. Six modules with 236 hub genes were identified through WGCNA analysis. Among these six modules, blue and brown modules were of the highest correlations with ruptured plaques (with a correlation of 0.82 and -0.9 respectively). 72 hub genes were identified from blue and brown modules. These 72 genes were the most likely ones being related to cell adhesion, extracellular matrix organization, cell growth, cell migration, leukocyte migration, PIK-Akt signaling, focal adhesion, and ECM-receptor interaction. Among the 72 hub genes, 45 were mapped to the DEGs (logFC > 1.0, p-value < 0.05). The sub-network of these 45 hub genes and MCODE analysis indicated 3 clusters (13 genes) as key genes. They were LOXL1, FBLN5, FMOD, ELN, EFEMP1 in cluster 1, RILP, HLA-DRA, HLA-DMB, HLA-DMA in cluster 2, and SFRP4, FZD6, DKK3 in cluster 3. Further expression detection indicated EFEMP1, BGN, ELN, FMOD, DKK3, FBLN5, FZD6, HLA-DRA, HLA-DMB, HLA-DMA, and RILP might have potential diagnostic value.
动脉粥样硬化斑块的破裂是心血管和脑血管事件的关键。鉴定与斑块破裂相关的关键基因是预测斑块状态和预防临床事件的重要方法。在本研究中,我们从 GEO 数据库中下载了两个与动脉粥样硬化斑块破裂相关的表达谱(GSE41571 和 GSE120521)。GSE41571 中的 11 个样本用于鉴定差异表达基因(DEGs),并通过 R 软件构建加权基因相关网络分析(WGCNA)。DAVID 网站中的基因肿瘤学(GO)和京都基因与基因组百科全书(KEGG)富集工具,以及 STRING 网站中的蛋白质-蛋白质相互作用,用于预测基因的功能和机制。此外,我们将 WGCNA 中提取的枢纽基因映射到 DEGs 上,并使用 Cytoscape 3.7.2 构建了一个子网络。通过 Cytoscape 中的分子复合物检测(MCODE)确定关键基因。进一步使用数据集 GSE120521 和人颈动脉内膜切除术(CEA)斑块进行验证。结果:在我们的研究中,在 GSE41571 中鉴定出 868 个 DEGs。通过 WGCNA 分析鉴定出 6 个包含 236 个枢纽基因的模块。在这 6 个模块中,蓝色和棕色模块与破裂斑块的相关性最高(分别为 0.82 和-0.9)。从蓝色和棕色模块中鉴定出 72 个枢纽基因。这些 72 个基因最有可能与细胞黏附、细胞外基质组织、细胞生长、细胞迁移、白细胞迁移、PIK-Akt 信号、焦点黏附、细胞外基质-受体相互作用有关。在这 72 个枢纽基因中,有 45 个映射到 DEGs(logFC > 1.0,p 值 < 0.05)。这 45 个枢纽基因的子网络和 MCODE 分析表明有 3 个簇(13 个基因)为关键基因。它们是簇 1 中的 LOXL1、FBLN5、FMOD、ELN、EFEMP1,簇 2 中的 RILP、HLA-DRA、HLA-DMB、HLA-DMA,以及簇 3 中的 SFRP4、FZD6、DKK3。进一步的表达检测表明,EFEMP1、BGN、ELN、FMOD、DKK3、FBLN5、FZD6、HLA-DRA、HLA-DMB、HLA-DMA 和 RILP 可能具有潜在的诊断价值。