Suppr超能文献

用于扩散加权成像分割的束状测地线卷积神经网络

Bundle geodesic convolutional neural network for diffusion-weighted imaging segmentation.

作者信息

Liu Renfei, Lauze François, Erleben Kenny, Berg Rune W, Darkner Sune

机构信息

University of Copenhagen, Department of Computer Science, Copenhagen, Denmark.

University of Copenhagen, Department of Neuroscience, Copenhagen, Denmark.

出版信息

J Med Imaging (Bellingham). 2022 Nov;9(6):064002. doi: 10.1117/1.JMI.9.6.064002. Epub 2022 Nov 17.

Abstract

PURPOSE

Applying machine learning techniques to magnetic resonance diffusion-weighted imaging (DWI) data is challenging due to the size of individual data samples and the lack of labeled data. It is possible, though, to learn general patterns from a very limited amount of training data if we take advantage of the geometry of the DWI data. Therefore, we present a tissue classifier based on a Riemannian deep learning framework for single-shell DWI data.

APPROACH

The framework consists of three layers: a lifting layer that locally represents and convolves data on tangent spaces to produce a family of functions defined on the rotation groups of the tangent spaces, i.e., a (not necessarily continuous) function on a bundle of rotational functions on the manifold; a group convolution layer that convolves this function with rotation kernels to produce a family of local functions over each of the rotation groups; a projection layer using maximization to collapse this local data to form manifold based functions.

RESULTS

Experiments show that our method achieves the performance of the same level as state-of-the-art while using way fewer parameters in the model ( ). Meanwhile, we conducted a model sensitivity analysis for our method. We ran experiments using a proportion (69.2%, 53.3%, and 29.4%) of the original training set and analyzed how much data the model needs for the task. Results show that this does reduce the overall classification accuracy mildly, but it also boosts the accuracy for minority classes.

CONCLUSIONS

This work extended convolutional neural networks to Riemannian manifolds, and it shows the potential in understanding structural patterns in the brain, as well as in aiding manual data annotation.

摘要

目的

由于单个数据样本的规模以及标记数据的匮乏,将机器学习技术应用于磁共振扩散加权成像(DWI)数据颇具挑战性。不过,如果我们利用DWI数据的几何特性,那么从非常有限的训练数据中学习通用模式是有可能的。因此,我们提出了一种基于黎曼深度学习框架的单壳DWI数据组织分类器。

方法

该框架由三层组成:一个提升层,它在切空间上对数据进行局部表示和卷积,以生成一族定义在切空间旋转群上的函数,即在流形上的一族旋转函数束上的(不一定连续的)函数;一个群卷积层,它将此函数与旋转核进行卷积,以在每个旋转群上生成一族局部函数;一个投影层,使用最大化操作将这些局部数据压缩,以形成基于流形的函数。

结果

实验表明,我们的方法在模型中使用少得多的参数( )的情况下,达到了与现有技术相同水平的性能。同时,我们对我们的方法进行了模型敏感性分析。我们使用原始训练集的一定比例(69.2%、53.3%和29.4%)进行实验,并分析模型完成该任务需要多少数据。结果表明,这确实会轻微降低整体分类准确率,但也提高了少数类别的准确率。

结论

这项工作将卷积神经网络扩展到了黎曼流形,它显示了在理解大脑结构模式以及辅助人工数据标注方面的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验