Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK.
Department of Chemistry and Centre for Plastic Electronics, Imperial College London, London W12 0BZ, UK.
Science. 2020 Jul 3;369(6499):96-102. doi: 10.1126/science.aba1628.
Longevity has been a long-standing concern for hybrid perovskite photovoltaics. We demonstrate high-resilience positive-intrinsic-negative perovskite solar cells by incorporating a piperidinium-based ionic compound into the formamidinium-cesium lead-trihalide perovskite absorber. With the bandgap tuned to be well suited for perovskite-on-silicon tandem cells, this piperidinium additive enhances the open-circuit voltage and cell efficiency. This additive also retards compositional segregation into impurity phases and pinhole formation in the perovskite absorber layer during aggressive aging. Under full-spectrum simulated sunlight in ambient atmosphere, our unencapsulated and encapsulated cells retain 80 and 95% of their peak and post-burn-in efficiencies for 1010 and 1200 hours at 60° and 85°C, respectively. Our analysis reveals detailed degradation routes that contribute to the failure of aged cells.
长寿命一直是杂化钙钛矿光伏的一个长期关注点。我们通过在甲脒碘化铯铅三卤化物钙钛矿吸收体中引入一种哌啶基离子化合物,来制备具有高弹性的正-本征-负钙钛矿太阳能电池。通过将带隙调谐为适合钙钛矿-硅串联电池,这种哌啶添加剂提高了开路电压和电池效率。这种添加剂还能延缓在苛刻老化条件下钙钛矿吸收层中杂质相的组成分凝和针孔的形成。在环境大气中的全光谱模拟太阳光下,我们的未封装和封装电池在 60°C 和 85°C 下分别经过 1010 和 1200 小时老化后,其峰值效率和老化后效率分别保持在初始值的 80%和 95%以上。我们的分析揭示了导致老化电池失效的详细降解途径。