Suppr超能文献

基于长短期记忆网络(LSTM)的儿童脑磁共振成像(MRI)脑龄估计

BRAIN AGE ESTIMATION USING LSTM ON CHILDREN'S BRAIN MRI.

作者信息

He Sheng, Gollub Randy L, Murphy Shawn N, Perez Juan David, Prabhu Sanjay, Pienaar Rudolph, Robertson Richard L, Grant P Ellen, Ou Yangming

机构信息

Boston Children's Hospital, Harvard Medical School, Boston, USA.

Massachusetts General Hospital, Harvard Medical School, Boston, USA.

出版信息

Proc IEEE Int Symp Biomed Imaging. 2020 Apr;2020:420-423. doi: 10.1109/isbi45749.2020.9098356. Epub 2020 May 22.

Abstract

Brain age prediction based on children's brain MRI is an important biomarker for brain health and brain development analysis. In this paper, we consider the 3D brain MRI volume as a sequence of 2D images and propose a new framework using the recurrent neural network for brain age estimation. The proposed method is named as 2D-ResNet18+Long short-term memory (LSTM), which consists of four parts: 2D ResNet18 for feature extraction on 2D images, a pooling layer for feature reduction over the sequences, an LSTM layer, and a final regression layer. We apply the proposed method on a public multisite NIH-PD dataset and evaluate generalization on a second multisite dataset, which shows that the proposed 2D-ResNet18+LSTM method provides better results than traditional 3D based neural network for brain age estimation.

摘要

基于儿童脑部磁共振成像(MRI)的脑龄预测是脑健康和脑发育分析的重要生物标志物。在本文中,我们将三维脑部MRI体积视为二维图像序列,并提出了一种使用递归神经网络进行脑龄估计的新框架。所提出的方法被命名为2D-ResNet18+长短期记忆网络(LSTM),它由四个部分组成:用于二维图像特征提取的2D ResNet18、用于序列特征降维的池化层、一个LSTM层和一个最终回归层。我们将所提出的方法应用于一个公共的多站点NIH-PD数据集,并在第二个多站点数据集上评估其泛化能力,结果表明所提出的2D-ResNet18+LSTM方法在脑龄估计方面比传统的基于三维的神经网络提供了更好的结果。

相似文献

1
BRAIN AGE ESTIMATION USING LSTM ON CHILDREN'S BRAIN MRI.基于长短期记忆网络(LSTM)的儿童脑磁共振成像(MRI)脑龄估计
Proc IEEE Int Symp Biomed Imaging. 2020 Apr;2020:420-423. doi: 10.1109/isbi45749.2020.9098356. Epub 2020 May 22.
3
Entity recognition from clinical texts via recurrent neural network.基于循环神经网络的临床文本实体识别。
BMC Med Inform Decis Mak. 2017 Jul 5;17(Suppl 2):67. doi: 10.1186/s12911-017-0468-7.
8
Decoding of finger trajectory from ECoG using deep learning.使用深度学习对 ECoG 进行手指轨迹解码。
J Neural Eng. 2018 Jun;15(3):036009. doi: 10.1088/1741-2552/aa9dbe. Epub 2017 Nov 28.

本文引用的文献

3
Brain age predicts mortality.脑龄预测死亡率。
Mol Psychiatry. 2018 May;23(5):1385-1392. doi: 10.1038/mp.2017.62. Epub 2017 Apr 25.
5
The NIH MRI study of normal brain development.美国国立卫生研究院对正常大脑发育的磁共振成像研究。
Neuroimage. 2006 Mar;30(1):184-202. doi: 10.1016/j.neuroimage.2005.09.068. Epub 2006 Jan 11.
6
Long short-term memory.长短期记忆
Neural Comput. 1997 Nov 15;9(8):1735-80. doi: 10.1162/neco.1997.9.8.1735.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验