Suppr超能文献

通过结合自供电氧化锌纳米发电机增强运动功能恢复和神经功能的机械信息仿生聚合物支架。

Mechano-Informed Biomimetic Polymer Scaffolds by Incorporating Self-Powered Zinc Oxide Nanogenerators Enhance Motor Recovery and Neural Function.

机构信息

Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.

Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China.

出版信息

Small. 2020 Aug;16(32):e2000796. doi: 10.1002/smll.202000796. Epub 2020 Jul 7.

Abstract

Piezoelectric materials can produce electrical power from the mechanical stimulation and thus, they may accelerate electroactive tissue healing as a promising treatment for traumatic peripheral nerve injuries. In this study, a piezoelectric zinc oxide nanogenerator scaffold is manufactured by 3D injectable multilayer biofabrication. The piezoelectric polymeric scaffold displays desirable mechanical and physical characteristics, such as aligned porosity, high elasticity, scaffold stiffness, surface energy, and excellent shear behavior. In addition, its biocompatibility supplies Schwann cells with an adhesive, proliferative, and angiogenic interface, as is reflected by higher expression of functional proteins including nerve growth factor (NGF) and vascular endothelial growth factor (VEGF). In vivo mechanical stimuli by treadmill practice contribute to the comprehensive reparative therapy. The piezoelectric conduit accelerates nerve conducting velocity, promotes axonal remyelination, and restores motor function by recovering endplate muscles. Moreover, the piezoelectric nanogenerator scaffold creates biomimetic electrically conductive microenvironment without causing noticeable toxicity to functioning organs and improves peripheral nerve restoration by the multifunctional characteristics. Therefore, the mechano-informed biomimetic piezoelectric scaffold may have enormous potential in the neuroengineering for regenerative medicine.

摘要

压电材料可以将机械刺激转化为电能,因此,它们可能会加速电活性组织的愈合,成为创伤性周围神经损伤的一种有前途的治疗方法。在这项研究中,通过 3D 可注射多层生物制造制造了压电氧化锌纳米发电机支架。压电聚合物支架具有理想的机械和物理特性,例如取向的多孔性、高弹性、支架刚度、表面能和出色的剪切性能。此外,其生物相容性为施万细胞提供了一个黏附、增殖和血管生成的界面,这反映在包括神经生长因子(NGF)和血管内皮生长因子(VEGF)在内的功能性蛋白质的更高表达上。跑步机练习的体内机械刺激有助于全面的修复治疗。压电导管通过恢复终板肌肉,加速神经传导速度,促进轴突髓鞘再生,恢复运动功能。此外,压电纳米发电机支架通过多功能特性创造出仿生导电微环境,而不会对功能器官造成明显毒性,并通过改善周围神经恢复。因此,机械信息仿生压电支架在再生医学的神经工程中具有巨大的潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验