National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan430074, China.
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan430070, China.
ACS Nano. 2022 Oct 25;16(10):16513-16528. doi: 10.1021/acsnano.2c05818. Epub 2022 Sep 29.
An electroactive scaffold integrated with noninvasive electrical-stimulation (ES) capability shows great promise in the repair and regeneration of damaged tissues. Developing high-performance piezoelectric biomaterials which can simultaneously serve as both a biodegradable tissue scaffold and controllable electrical stimulator remains a great challenge. Herein, we constructed a biodegradable high-performance 3D piezoelectric scaffold with ultrasound (US)-driven wireless ES capability, and demonstrated its successful application for the repair of spinal cord injuries in a rat model. The 3D multichannel piezoelectric scaffold was prepared by electrospinning of poly(lactic acid) (PLA) nanofibers incorporated with biodegradable high-performance piezoelectric potassium sodium niobate (KNaNbO, KNN) nanowires. With programmed US irradiation as a remote mechanical stimulus, the on-demand ES with an adjustable timeline, duration, and strength can be delivered by the 3D piezoelectric scaffold. Under proper US excitation, the 3D tissue scaffolds made of the piezoelectric composite nanofibers can accelerate the recovery of motor functions and enhance the repair of spinal cord injury. The immunohistofluorescence investigation indicated that the 3D piezoelectric scaffolds combined with the US-driven ES promoted neural stem cell differentiation and endogenous angiogenesis in the lesion. This work highlights the potential application of a biodegradable high-performance piezoelectric scaffold providing US-driven on-demand electrical cues for regenerative medicine.
一种集成了非侵入性电刺激(ES)功能的电活性支架在受损组织的修复和再生方面具有巨大的应用前景。开发同时可用作可生物降解组织支架和可控电刺激器的高性能压电生物材料仍然是一个巨大的挑战。本文构建了一种具有超声(US)驱动无线 ES 功能的可生物降解高性能 3D 压电支架,并在大鼠模型中成功应用于脊髓损伤的修复。3D 多通道压电支架是通过电纺聚乳酸(PLA)纳米纤维与可生物降解的高性能压电铌酸钾钠(KNaNbO,KNN)纳米线复合而成。通过编程的 US 照射作为远程机械刺激,可通过 3D 压电支架按需提供具有可调节时间线、持续时间和强度的 ES。在适当的 US 激发下,由压电复合纳米纤维制成的 3D 组织支架可以加速运动功能的恢复,并增强脊髓损伤的修复。免疫荧光研究表明,3D 压电支架与 US 驱动的 ES 相结合,促进了病变部位神经干细胞的分化和内源性血管生成。这项工作突出了一种可生物降解的高性能压电支架的潜在应用,为再生医学提供了 US 驱动的按需电刺激。