Paulin Michael G, Pullar Kiri F, Hoffman Larry F
Department of Zoology, University of Otago, Dunedin, New Zealand.
Department of Head and Neck Surgery and Brain Research Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States.
Front Neurol. 2024 Dec 18;15:1465211. doi: 10.3389/fneur.2024.1465211. eCollection 2024.
The relative accessibility and simplicity of vestibular sensing and vestibular-driven control of head and eye movements has made the vestibular system an attractive subject to experimenters and theoreticians interested in developing realistic quantitative models of how brains gather and interpret sense data and use it to guide behavior. Head stabilization and eye counter-rotation driven by vestibular sensory input in response to rotational perturbations represent natural, ecologically important behaviors that can be reproduced in the laboratory and analyzed using relatively simple mathematical models. Models drawn from dynamical systems and control theory have previously been used to analyze the behavior of vestibular sensory neurons. In the Bayesian framework, which is becoming widely used in cognitive science, vestibular sense data must be modeled as random samples drawn from probability distributions whose parameters are kinematic state variables of the head. We show that Exwald distributions are accurate models of spontaneous interspike interval distributions in spike trains recoded from chinchilla semicircular canal afferent neurons. Each interval in an Exwald distribution is the sum of an interval drawn from an Exponential distribution and a Wald or Inverse Gaussian distribution. We show that this abstract model can be realized using simple physical mechanisms and re-parameterized in terms of the relevant kinematic state variables of the head. This model predicts and explains statistical and dynamical properties of semicircular canal afferent neurons in a novel way. It provides an empirical foundation for realistic Bayesian models of neural computation in the brain that underlie the perception of head motion and the control of head and eye movements.
前庭感觉以及由前庭驱动的头部和眼球运动控制相对易于实现且简单,这使得前庭系统成为实验人员和理论学家感兴趣的研究对象,他们希望建立逼真的定量模型,以研究大脑如何收集和解释感官数据并利用这些数据来指导行为。前庭感觉输入响应旋转扰动而驱动的头部稳定和眼球反向旋转,代表了自然的、具有生态学重要性的行为,这些行为可以在实验室中重现,并使用相对简单的数学模型进行分析。此前,源自动力系统和控制理论的模型已被用于分析前庭感觉神经元的行为。在认知科学中广泛应用的贝叶斯框架下,前庭感觉数据必须被建模为从概率分布中抽取的随机样本,这些概率分布的参数是头部的运动学状态变量。我们发现,埃克斯瓦尔德分布是对从龙猫半规管传入神经元记录的尖峰序列中自发峰峰间隔分布的精确模型。埃克斯瓦尔德分布中的每个间隔都是从指数分布以及瓦尔德或逆高斯分布中抽取的一个间隔之和。我们表明,这个抽象模型可以通过简单的物理机制实现,并根据头部相关的运动学状态变量重新参数化。该模型以一种新颖的方式预测并解释了半规管传入神经元的统计和动力学特性。它为大脑中基于头部运动感知以及头部和眼球运动控制的神经计算的逼真贝叶斯模型提供了实证基础。