International Joint Research Group BioNanotechnology & NanoMedicine (NANO), Vrije Universiteit Brussel-Ecole Polytechnique de Lausanne (EPFL), B-1050 Brussels, Belgium-B-1015 Lausanne, Switzerland.
Structural Biology Brussels (SBB), Department of Bioengineering Sciences, Vrije Universiteit Brussel, B-1050 Brussels, Belgium.
Sci Adv. 2020 Jun 24;6(26):eaba3139. doi: 10.1126/sciadv.aba3139. eCollection 2020 Jun.
Living single yeast cells show a specific cellular motion at the nanometer scale with a magnitude that is proportional to the cellular activity of the cell. We characterized this cellular nanomotion pattern of nonattached single yeast cells using classical optical microscopy. The distribution of the cellular displacements over a short time period is distinct from random motion. The range and shape of such nanomotion displacement distributions change substantially according to the metabolic state of the cell. The analysis of the nanomotion frequency pattern demonstrated that single living yeast cells oscillate at relatively low frequencies of around 2 hertz. The simplicity of the technique should open the way to numerous applications among which antifungal susceptibility tests seem the most straightforward.
单个活酵母细胞在纳米尺度上表现出特定的细胞运动,其幅度与细胞的活性成正比。我们使用经典的光学显微镜对非附着的单个酵母细胞的这种细胞纳米运动模式进行了表征。在短时间内,细胞位移的分布与随机运动明显不同。这种纳米运动位移分布的范围和形状根据细胞的代谢状态有很大的变化。纳米运动频率模式的分析表明,单个活酵母细胞以相对较低的频率(约 2 赫兹)振荡。该技术的简单性应该为众多应用开辟道路,其中抗真菌药敏试验似乎最为直接。