Suppr超能文献

通过在超疏水表面上控制蒸发实现对生物污染物的超灵敏表面增强拉曼散射检测。

Ultrasensitive surface-enhanced Raman scattering detection of biological pollutants by controlled evaporation on omniphobic substrates.

作者信息

Mehta Megha, Waterland Mark

机构信息

School of Fundamental Sciences, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand.

出版信息

Heliyon. 2020 Jun 29;6(6):e04317. doi: 10.1016/j.heliyon.2020.e04317. eCollection 2020 Jun.

Abstract

A simple and highly sensitive method, combining slippery liquid-infused porous substrates and surface-enhanced Raman spectroscopy (SLIPSERS) was used to detect biological pollutants at very low concentrations. Two commonly used rodenticides (brodifacoum and sodium monofluoroacetate) with long biological half-lives were selected as analytes. The SLIPSERS platform gives reproducible SERS enhancement and this allows "label-free" SERS detection of these environmental pollutants. Analyte ions were detected down to a concentration of 10 M for brodifacoum and 10 M for sodium monofluoroacetate. The limit of detection, limit of quantification and limit of linearity for brodifacoum are 10 M, 10 M and 10 M respectively. The SLIPSERS method uses a physical process to significantly increase analyte concentration, and SERS enhancement and therefore can be generally applied to a range of environmental pollutants. The method can be successfully used for ultra-sensitive detection of several chemical and biological contaminants and meet the emerging needs of environmental monitoring and food safety analysis.

摘要

一种将光滑液体注入多孔基底与表面增强拉曼光谱相结合的简单且高灵敏度的方法(SLIPSERS)被用于检测极低浓度的生物污染物。选择了两种具有长生物半衰期的常用灭鼠剂(溴敌隆和氟乙酸钠)作为分析物。SLIPSERS平台能提供可重复的表面增强拉曼散射增强效果,这使得对这些环境污染物进行“无标记”表面增强拉曼散射检测成为可能。对于溴敌隆,检测到分析物离子的浓度低至10⁻⁹ M,对于氟乙酸钠则为10⁻⁸ M。溴敌隆的检测限、定量限和线性范围分别为10⁻⁹ M、10⁻⁸ M和10⁻⁷ M。SLIPSERS方法利用物理过程显著提高分析物浓度以及表面增强拉曼散射增强效果,因此可普遍应用于一系列环境污染物。该方法可成功用于超灵敏检测多种化学和生物污染物,满足环境监测和食品安全分析的新需求。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf95/7330073/258e9404c754/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验