Key Laboratory of Laboratory Medical Diagnostics designed by Chinese Ministry of Education, Chongqing Medical University, #1 Yi-Xue-Yuan Rd., Yu-zhong District, Chongqing, 400016, China.
Experimental Teaching Center of Basic Medicine Science, Chongqing Medical University, #1 Yi-Xue-Yuan Rd., Yu-zhong District, Chongqing, 400016, China.
Cell Death Dis. 2020 Jul 3;11(7):508. doi: 10.1038/s41419-020-2714-7.
Cancer stem cell (CSC) is a challenge in the therapy of triple-negative breast cancer (TNBC). Intratumoral hypoxia is a common feature of solid tumor. Hypoxia may contribute to the maintenance of CSC, resulting in a poor efficacy of traditional treatment and recurrence of TNBC cases. However, the underlying molecular mechanism involved in hypoxia-induced CSC stemness maintenance remains unclear. Here, we report that hypoxia stimulated DNA double-strand breaks independent of ATM kinase activation (called oxidized ATM in this paper) play a crucial role in TNBC mammosphere formation and stemness maintenance by governing a specific energy metabolism reprogramming (EMR). Oxidized ATM up-regulates GLUT1, PKM2, and PDHa expressions to enhance the uptake of glucose and production of pyruvate rather than lactate products, which facilitates glycolytic flux to mitochondrial pyruvate and citrate, thus resulting in accumulation of cytoplasmic acetyl-CoA instead of the tricarboxylic acid (TCA) cycle by regulating ATP-citrate lyase (ACLY) activity. Our findings unravel a novel model of TNBC-CSC glucose metabolism and its functional role in maintenance of hypoxic TNBC-CSC stemness. This work may help us to develop new therapeutic strategies for TNBC treatment.
癌症干细胞(CSC)是三阴性乳腺癌(TNBC)治疗中的一个挑战。肿瘤内缺氧是实体瘤的一个共同特征。缺氧可能有助于维持 CSC,导致传统治疗效果不佳和 TNBC 病例复发。然而,缺氧诱导的 CSC 干性维持所涉及的潜在分子机制尚不清楚。在这里,我们报告缺氧刺激 DNA 双链断裂,不依赖于 ATM 激酶激活(本文称为氧化 ATM),通过调节特定的能量代谢重编程(EMR),在 TNBC 球体形成和干性维持中发挥关键作用。氧化 ATM 上调 GLUT1、PKM2 和 PDHa 的表达,以增强葡萄糖的摄取和丙酮酸的产生,而不是乳酸产物,这有利于糖酵解通量到线粒体丙酮酸和柠檬酸,从而导致细胞质乙酰辅酶 A 的积累,而不是三羧酸(TCA)循环通过调节 ATP-柠檬酸裂解酶(ACLY)活性。我们的发现揭示了一种新的 TNBC-CSC 葡萄糖代谢模型及其在维持缺氧 TNBC-CSC 干性中的功能作用。这项工作可能有助于我们为 TNBC 治疗开发新的治疗策略。