Harris Richard J, Zdenek Christina N, Nouwens Amanda, Sweeney Charlotte, Dunstan Nathan, Fry Bryan G
Venom Evolution Lab, University of Queensland, Biological Sciences, St. Lucia, Brisbane, 4072, Australia.
School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD, 4072, Australia.
Toxicon X. 2020 Jul 1;7:100050. doi: 10.1016/j.toxcx.2020.100050. eCollection 2020 Sep.
Contralaterally positioned maxillary (upper jaw) venom glands in snakes are mechanically independent, being able to discharge venom from either gland separately. This has led some studies to test venom function and composition of each contralaterally positioned venom gland to investigate any differences. However, the data on the subject to-date derives from limited sample sizes, appearing somewhat contradictory, and thus still remains inconclusive. Here, we tested samples obtained from the left and right venom glands of four specimens for their relative binding to the orthosteric site of amphibian, lizard, snake, bird, and rodent alpha-1 nicotinic acetylcholine receptors. We also show the relative proteomic patterns displayed by reversed phase liquid chromatography - mass spectrometry. Our results indicate that three of the venom gland sets showed no difference in both functional binding and composition, whilst one venom gland set showed a slight difference in functional binding (but not in specificity patterns between prey types) or venom composition. We hypothesise that these differences in functional binding may be due to one gland having previously ejected venom at some time prior to venom extraction, whilst its contralateral counterpart did not. This might cause the differential rate of toxin replenishment to be unequal between glands, thus instigating the difference in potency, likely due to uneven toxin proportions between glands at the time of venom extraction. These results demonstrate that the separate venom producing glands in snakes remain under the same genetic control elements and produce identical venom components.
蛇类中位于对侧的上颌(上颚)毒腺在机械结构上相互独立,能够分别从任一腺体排出毒液。这使得一些研究对每个对侧毒腺的毒液功能和成分进行测试,以探究是否存在差异。然而,迄今为止关于该主题的数据来自有限的样本量,结果似乎有些矛盾,因此仍然没有定论。在此,我们测试了从四只标本的左右毒腺获取的样本,检测它们与两栖动物、蜥蜴、蛇、鸟类和啮齿动物α-1烟碱型乙酰胆碱受体的正构位点的相对结合情况。我们还展示了反相液相色谱 - 质谱法呈现的相对蛋白质组学模式。我们的结果表明,三组毒腺在功能结合和成分上均无差异,而一组毒腺在功能结合方面存在轻微差异(但在不同猎物类型之间的特异性模式上没有差异)或毒液成分存在差异。我们推测,这些功能结合上的差异可能是由于一个腺体在毒液提取之前的某个时间曾排出过毒液,而其对侧的腺体没有。这可能导致腺体之间毒素补充的速率不同,从而引发效力上的差异,这可能是由于毒液提取时腺体之间毒素比例不均衡所致。这些结果表明,蛇类中独立的毒液产生腺体仍受相同的遗传控制元件调控,并产生相同的毒液成分。