Suppr超能文献

预测小型供水管网中不受监管的消毒副产物:一个经验建模框架。

Predicting unregulated disinfection by-products in small water distribution networks: an empirical modelling framework.

机构信息

School of Engineering, The University of British Columbia Okanagan, 3333 University Way, Kelowna, British Columbia, V1V 1V7, Canada.

École Supérieure D'aménagement du Territoire et Développement Régional (ESAD), 2325, allée des Bibliothèque Université Laval, Québec City, QC, G1V 0A6, Canada.

出版信息

Environ Monit Assess. 2020 Jul 9;192(8):497. doi: 10.1007/s10661-020-08468-y.

Abstract

Disinfection is used to deactivate pathogens in drinking water. However, disinfectants react with natural organic matter present in water to form disinfection by-products (DBPs). While a few of these DBPs have been studied extensively and are regulated in many countries, new unregulated DBPs (UR-DBPs) have also recently been identified in drinking water. The UR-DBPs are considered to be more toxic than regulated DBPs (R-DBPs). To understand the occurrence of UR-DBPs in a water distribution network (WDN), this research presents an approach to predicting the behaviour of emerging UR-DBPs such as dichloroacetonitrile (DCAN), trichloropropanone (TCP), and trichloronitromethane (TCNM) in WDNs. Water quality data, generated by sampling and laboratory analysis of 12 small communities, was used to develop predictive models. A framework was also proposed alongside the predictive models to estimate the concentration of emerging UR-DBPs under limited water quality sampling information. Moreover, the relationship between emerging UR-DBP concentrations and their identified predictors was further observed and evaluated by developing contour profiles. DCAN and TCP predictive models have coefficient of determination (R) > 85%, whereas for TCNM model, the R was > 65%. Water quality parameters including water temperature, turbidity, conductivity, and dissolved organic carbon concentrations were identified as key predictors. Similarly, trichloroacetic acid and bromodichloromethane were identified as key predictors among DBP families, to predict the occurrence of emerging UR-DBPs. Developed models and relationships between the UR-DBPs and predictors can help water utilities and regulators to manage the occurrence of UR-DBPs in small WDNs.

摘要

消毒用于灭活饮用水中的病原体。然而,消毒剂与水中存在的天然有机物反应,形成消毒副产物 (DBP)。虽然其中一些 DBP 已经得到了广泛的研究,并在许多国家得到了监管,但最近在饮用水中也发现了新的未受监管的 DBP (UR-DBP)。与受监管的 DBP (R-DBP) 相比,UR-DBP 被认为毒性更大。为了了解 UR-DBP 在供水管网 (WDN) 中的发生情况,本研究提出了一种预测新兴 UR-DBP(如二氯乙腈 (DCAN)、三氯丙酮 (TCP) 和三氯硝基甲烷 (TCNM))在 WDN 中行为的方法。通过对 12 个小型社区进行采样和实验室分析生成的水质数据用于开发预测模型。还提出了一个框架,以便在有限的水质采样信息下,估算新兴 UR-DBP 的浓度。此外,还通过开发等高线图进一步观察和评估新兴 UR-DBP 浓度与其确定的预测因子之间的关系。DCAN 和 TCP 预测模型的确定系数 (R) > 85%,而 TCNM 模型的 R > 65%。水质量参数,包括水温、浊度、电导率和溶解有机碳浓度被确定为关键预测因子。同样,三氯乙酸和溴二氯甲烷被确定为 DBP 家族中的关键预测因子,以预测新兴 UR-DBP 的出现。开发的模型和 UR-DBP 与预测因子之间的关系可以帮助供水公司和监管机构管理小型 WDN 中 UR-DBP 的出现。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验