Suppr超能文献

通用设计的贝塔冠状病毒疫苗,用于预防 COVID-19、MERS 和 SARS。

A Universal Design of Betacoronavirus Vaccines against COVID-19, MERS, and SARS.

机构信息

Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 101408, China; Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Tropical Medicine and Laboratory Medicine, The First Affiliated Hospital, Hainan Medical University, Hainan 571199, China.

Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 101408, China.

出版信息

Cell. 2020 Aug 6;182(3):722-733.e11. doi: 10.1016/j.cell.2020.06.035. Epub 2020 Jun 28.

Abstract

Vaccines are urgently needed to control the ongoing pandemic COVID-19 and previously emerging MERS/SARS caused by coronavirus (CoV) infections. The CoV spike receptor-binding domain (RBD) is an attractive vaccine target but is undermined by limited immunogenicity. We describe a dimeric form of MERS-CoV RBD that overcomes this limitation. The RBD-dimer significantly increased neutralizing antibody (NAb) titers compared to conventional monomeric form and protected mice against MERS-CoV infection. Crystal structure showed RBD-dimer fully exposed dual receptor-binding motifs, the major target for NAbs. Structure-guided design further yielded a stable version of RBD-dimer as a tandem repeat single-chain (RBD-sc-dimer) which retained the vaccine potency. We generalized this strategy to design vaccines against COVID-19 and SARS, achieving 10- to 100-fold enhancement of NAb titers. RBD-sc-dimers in pilot scale production yielded high yields, supporting their scalability for further clinical development. The framework of immunogen design can be universally applied to other beta-CoV vaccines to counter emerging threats.

摘要

疫苗对于控制当前的 COVID-19 大流行以及之前由冠状病毒(CoV)感染引起的 MERS/SARS 至关重要。CoV 的刺突受体结合域(RBD)是一个有吸引力的疫苗靶点,但免疫原性有限。我们描述了一种 MERS-CoV RBD 的二聚体形式,它克服了这一限制。与传统的单体形式相比,RBD 二聚体显著增加了中和抗体(NAb)滴度,并保护小鼠免受 MERS-CoV 感染。晶体结构显示 RBD 二聚体完全暴露了双受体结合基序,这是 NAb 的主要靶标。基于结构的设计进一步得到了 RBD 二聚体的稳定版本,即串联重复单链(RBD-sc-dimer),保留了疫苗效力。我们将这一策略推广到设计针对 COVID-19 和 SARS 的疫苗,使 NAb 滴度提高了 10 到 100 倍。在试点规模生产中,RBD-sc-dimer 产生了高产量,支持其进一步临床开发的可扩展性。免疫原设计框架可以普遍应用于其他β-CoV 疫苗,以应对新出现的威胁。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4637/7321023/cbb2dc402be4/fx1_lrg.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验