Loyola University Chicago, Maywood, IL, USA.
Kirklareli University, Kirklareli, Turkey.
J Parkinsons Dis. 2022;12(1):341-351. doi: 10.3233/JPD-212876.
Parkinson's disease (PD) is a chronic, disabling neurodegenerative disorder.
To predict a future diagnosis of PD using questionnaires and simple non-invasive clinical tests.
Participants in the prospective Kuakini Honolulu-Asia Aging Study (HAAS) were evaluated biannually between 1995-2017 by PD experts using standard diagnostic criteria. Autopsies were sought on all deaths. We input simple clinical and risk factor variables into an ensemble-tree based machine learning algorithm and derived models to predict the probability of developing PD. We also investigated relationships of predictive models and neuropathologic features such as nigral neuron density.
The study sample included 292 subjects, 25 of whom developed PD within 3 years and 41 by 5 years. 116 (46%) of 251 subjects not diagnosed with PD underwent autopsy. Light Gradient Boosting Machine modeling of 12 predictors correctly classified a high proportion of individuals who developed PD within 3 years (area under the curve (AUC) 0.82, 95%CI 0.76-0.89) or 5 years (AUC 0.77, 95%CI 0.71-0.84). A large proportion of controls who were misclassified as PD had Lewy pathology at autopsy, including 79%of those who died within 3 years. PD probability estimates correlated inversely with nigral neuron density and were strongest in autopsies conducted within 3 years of index date (r = -0.57, p < 0.01).
Machine learning can identify persons likely to develop PD during the prodromal period using questionnaires and simple non-invasive tests. Correlation with neuropathology suggests that true model accuracy may be considerably higher than estimates based solely on clinical diagnosis.
帕金森病(PD)是一种慢性、致残性神经退行性疾病。
使用问卷和简单的非侵入性临床测试预测未来的 PD 诊断。
1995-2017 年间,前瞻性库阿基尼-檀香山-亚洲老龄化研究(HAAS)的参与者每两年接受一次 PD 专家的评估,使用标准诊断标准。对所有死亡进行尸检。我们将简单的临床和危险因素变量输入到基于集成树的机器学习算法中,并得出预测 PD 发病概率的模型。我们还研究了预测模型与神经病理学特征(如黑质神经元密度)的关系。
研究样本包括 292 名受试者,其中 25 名在 3 年内发展为 PD,41 名在 5 年内发展为 PD。在未被诊断为 PD 的 251 名受试者中,有 116 名(46%)接受了尸检。使用 12 个预测因子的 Light Gradient Boosting Machine 建模正确地对在 3 年内发展为 PD 的个体进行了分类(曲线下面积(AUC)0.82,95%CI 0.76-0.89)或 5 年内(AUC 0.77,95%CI 0.71-0.84)。大量被错误分类为 PD 的对照组在尸检中存在路易体病理学,包括在 3 年内死亡的患者中的 79%。PD 概率估计与黑质神经元密度呈负相关,且与索引日期后 3 年内进行的尸检相关性最强(r=-0.57,p<0.01)。
使用问卷和简单的非侵入性测试,机器学习可以识别处于前驱期的 PD 患者。与神经病理学的相关性表明,真实的模型准确性可能远高于仅基于临床诊断的估计。