Siebler Flora, Lapin Alexey, Takors Ralf
Institute of Biochemical Engineering University of Stuttgart Stuttgart Germany.
Stuttgart Research Centre Systems Biology University of Stuttgart Stuttgart Germany.
Eng Life Sci. 2020 Feb 13;20(7):239-251. doi: 10.1002/elsc.201900132. eCollection 2020 Jul.
The reduction of greenhouse gas emissions and future perspectives of circular economy ask for new solutions to produce commodities and fine chemicals. Large-scale bubble columns operated by gaseous substrates such as CO, CO, and H to feed acetogens for product formations could be promising approaches. Valid in silico predictions of large-scale performance are needed to dimension bioreactors properly taking into account biological constraints, too. This contribution deals with the trade-off between sophisticated spatiotemporally resolved large-scale simulations using computationally intensive Euler-Euler and Euler-Lagrange approaches and coarse-grained 1-D models enabling fast performance evaluations. It is shown that proper consideration of gas hold-up is key to predict biological performance. Intrinsic bias of 1-D models can be compensated by reconsideration of Sauter diameters derived from uniquely performed Euler-Lagrange computational fluid dynamics.
减少温室气体排放以及循环经济的未来前景要求有新的解决方案来生产商品和精细化学品。由诸如CO、CO₂和H₂等气态底物操作的大型鼓泡塔,用于为产乙酸菌提供原料以形成产物,可能是很有前景的方法。为了在适当考虑生物限制因素的情况下正确确定生物反应器的尺寸,需要对大规模性能进行有效的计算机模拟预测。本文探讨了使用计算密集型的欧拉-欧拉和欧拉-拉格朗日方法进行复杂的时空分辨大规模模拟与能够快速评估性能的粗粒度一维模型之间的权衡。结果表明,正确考虑气含率是预测生物性能的关键。一维模型的固有偏差可以通过重新考虑从独特执行的欧拉-拉格朗日计算流体动力学得出的索特直径来补偿。