Scheie Eye Institute, Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, USA.
Center for Advanced Retinal and Ocular Therapeutics, University of Pennsylvania, Philadelphia, PA, USA.
Transl Vis Sci Technol. 2020 Jul 16;9(2):40. doi: 10.1167/tvst.9.2.40. eCollection 2020 Jul.
Adaptive optics imaging has enabled the visualization of photoreceptors both in health and disease. However, there remains a need for automated accurate cone photoreceptor identification in images of disease. Here, we apply an open-source convolutional neural network (CNN) to automatically identify cones in images of choroideremia (CHM). We further compare the results to the repeatability and reliability of manual cone identifications in CHM.
We used split-detection adaptive optics scanning laser ophthalmoscopy to image the inner segment cone mosaic of 17 patients with CHM. Cones were manually identified twice by one experienced grader and once by two additional experienced graders in 204 regions of interest (ROIs). An open-source CNN either pre-trained on normal images or trained on CHM images automatically identified cones in the ROIs. True and false positive rates and Dice's coefficient were used to determine the agreement in cone locations between data sets. Interclass correlation coefficient was used to assess agreement in bound cone density.
Intra- and intergrader agreement for cone density is high in CHM. CNN performance increased when it was trained on CHM images in comparison to normal, but had lower agreement than manual grading.
Manual cone identifications and cone density measurements are repeatable and reliable for images of CHM. CNNs show promise for automated cone selections, although additional improvements are needed to equal the accuracy of manual measurements.
These results are important for designing and interpreting longitudinal studies of cone mosaic metrics in disease progression or treatment intervention in CHM.
自适应光学成像是实现健康和疾病状态下光感受器可视化的一种手段。然而,在疾病图像中,仍然需要一种自动、准确的方法来识别锥体细胞。本研究应用开源卷积神经网络(CNN)自动识别脉络膜黑色素瘤(CHM)图像中的锥体细胞,并进一步将其结果与手动锥体细胞识别的重复性和可靠性进行比较。
我们使用分割检测自适应光学扫描激光检眼镜对 17 名 CHM 患者的内节锥体细胞马赛克进行成像。由一位经验丰富的分级员手动对 204 个感兴趣区域(ROI)进行两次识别,另外两位经验丰富的分级员进行一次识别。一个开源的 CNN 要么在正常图像上进行预训练,要么在 CHM 图像上进行训练,以自动识别 ROI 中的锥体细胞。真阳性率、假阳性率和 Dice 系数用于确定数据集之间的锥体细胞位置的一致性。组间相关系数用于评估边界锥体细胞密度的一致性。
CHM 中的锥体细胞密度的分级员内和分级员间的一致性很高。与正常图像相比,在 CHM 图像上进行训练的 CNN 性能有所提高,但与手动分级相比,一致性较低。
CHM 图像的手动锥体细胞识别和锥体细胞密度测量具有重复性和可靠性。CNN 有望实现锥体细胞的自动选择,尽管需要进一步改进以达到手动测量的准确性。
这些结果对于设计和解释 CHM 中锥体细胞马赛克指标的纵向研究以及疾病进展或治疗干预具有重要意义。