Suppr超能文献

多功能 3D 打印骨组织工程支架中大豆异黄酮的控制释放。

Controlled release of soy isoflavones from multifunctional 3D printed bone tissue engineering scaffolds.

机构信息

W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States.

W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States.

出版信息

Acta Biomater. 2020 Sep 15;114:407-420. doi: 10.1016/j.actbio.2020.07.006. Epub 2020 Jul 8.

Abstract

Recent challenges in post-surgical bone tumor management have elucidated the need for a multifunctional scaffold, which can be used for residual tumor-cell suppression, defect repair, and simultaneous bone regeneration. In this perspective, 3D printing allows to create a wide variety of patient-specific implant with complex porous architecture and compatible mechanical strength to that of cancellous bone. Here, a multifunctional bone graft substitute is designed by incorporating the three primary soy isoflavones: genistein, daidzein, and glycitein onto a 3D printed (3DP) tricalcium phosphate (TCP) scaffolds with designed pores, endowing them with in vitro chemopreventive, bone-cell proliferating and immune-modulatory potential. The interconnected porosity and biodegradability of 3DP TCP ceramics have allowed controlled release kinetics of genistein, daidzein and glycitein in acidic and physiological buffer medium for 16 days, which is fitted with Korsmeyer-Peppas model. Presence of genistein, a well-known natural biomolecule shows a 90% reduction in vitro osteosarcoma (MG-63) cell viability and proliferation after 11 days. Meanwhile, daidzein, the other primary isoflavone, promotes in vitro cellular attachment and enhances viability and proliferation of human fetal osteoblast cell (hFOB). Furthermore, controlled release of genistein, daidzein, and glycitein from 3DP TCP scaffold demonstrates improved hFOB cell proliferation, viability, and differentiation in a dynamic flow-perfusion bioreactor, which is utilized to better simulate the clinical microenvironment. Finally, in vivo H&E staining confirms controlled co-delivery of genistein-daidzein-glycitein from 3DP scaffold carefully modulated neutrophil recruitment to the surgery site after 24 h of implantation in a rat distal femur model. These results advance our understanding towards multipronged therapeutic approaches utilizing synthetic bone graft substitutes as a drug delivery vehicle, and more importantly, demonstrate the feasibility of localized tumor cell suppression and bone cell proliferation for post-surgical defect repair application. STATEMENT OF SIGNIFICANCE: Designed multimodal porosity of 3D printed TCP scaffold allows a controlled and sustained release of soy isoflavones, genistein, daidzein and glycitein in both physiological and acidic pH. Presence of genistein shows 90% reduction in vitro bone cancer cell viability and proliferation. Meanwhile, controlled release of genistein, daidzein, and glycitein from 3DP TCP scaffolds demonstrate improved osteoblast cell proliferation, viability, and differentiation in static and dynamic flow-perfusion bioreactor. Furthermore, H&E staining at 24 h post-surgical specimens from rat distal femur model shows neutrophil recruitment at the surgery site is significantly decreased, suggesting the anti-inflammatory property of soy isoflavones. This work provides deeper understanding on the design of a multifunctional 3D printed patient-specific scaffold with enhanced in vitro chemopreventive, osteogenic and in vivo anti-inflammatory ability.

摘要

最近在骨肿瘤手术后的管理方面面临的挑战,阐明了对多功能支架的需求,这种支架可用于抑制残留的肿瘤细胞、修复缺损和同时促进骨再生。从这个角度来看,3D 打印可以制造出各种具有复杂多孔结构和与松质骨兼容的机械强度的患者特异性植入物。在这里,通过将三种主要的大豆异黄酮:染料木黄酮、大豆苷元和黄豆苷元整合到具有设计孔的 3D 打印(3DP)磷酸三钙(TCP)支架上,设计了一种多功能骨移植物替代物,使它们具有体外化学预防、促进成骨细胞增殖和免疫调节的潜力。3DP TCP 陶瓷的互连孔隙率和生物降解性允许染料木黄酮、大豆苷元和黄豆苷元在酸性和生理缓冲介质中进行 16 天的控释动力学,这与 Korsmeyer-Peppas 模型相吻合。在体外,由于存在一种众所周知的天然生物分子染料木黄酮,骨肉瘤(MG-63)细胞的活力和增殖在 11 天后降低了 90%。同时,另一种主要的异黄酮大豆苷元促进了人胎成骨细胞(hFOB)的体外细胞附着,并增强了其活力和增殖。此外,3DP TCP 支架中染料木黄酮、大豆苷元和黄豆苷元的控释在动态流动灌注生物反应器中显示出 hFOB 细胞增殖、活力和分化的改善,这用于更好地模拟临床微环境。最后,在体内 H&E 染色证实,在大鼠股骨远端模型中植入 24 小时后,3DP 支架中染料木黄酮-大豆苷元-黄豆苷元的共递送可谨慎调节中性粒细胞向手术部位的募集。这些结果推进了我们对利用合成骨移植物替代物作为药物输送载体的多管齐下的治疗方法的理解,更重要的是,证明了局部肿瘤细胞抑制和骨细胞增殖在术后缺损修复应用中的可行性。 意义声明:3D 打印 TCP 支架的设计多模态孔隙率允许在生理和酸性 pH 下对大豆异黄酮、染料木黄酮、大豆苷元和黄豆苷元进行可控和持续的释放。在体外,染料木黄酮的存在使骨癌细胞的活力和增殖降低了 90%。同时,3DP TCP 支架中染料木黄酮、大豆苷元和黄豆苷元的控释在静态和动态流动灌注生物反应器中显示出成骨细胞增殖、活力和分化的改善。此外,在大鼠股骨远端模型术后 24 小时的手术标本的 H&E 染色显示,手术部位的中性粒细胞募集显著减少,提示大豆异黄酮具有抗炎作用。这项工作提供了对具有增强的体外化学预防、成骨和体内抗炎能力的多功能 3D 打印患者特异性支架的设计的更深入理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d6f9/8009492/789b943219af/nihms-1616465-f0001.jpg

相似文献

7
Liposome-Encapsulated Curcumin-Loaded 3D Printed Scaffold for Bone Tissue Engineering.载姜黄素脂质体的 3D 打印支架用于骨组织工程
ACS Appl Mater Interfaces. 2019 May 15;11(19):17184-17192. doi: 10.1021/acsami.9b01218. Epub 2019 May 1.

引用本文的文献

5
Vitamin D3 Release from MgO Doped 3D Printed TCP Scaffolds for Bone Regeneration.掺镁 3D 打印 TCP 支架促进骨再生过程中维生素 D3 的释放。
ACS Biomater Sci Eng. 2024 Mar 11;10(3):1676-1685. doi: 10.1021/acsbiomaterials.3c01779. Epub 2024 Feb 22.
9
Natural medicine delivery from 3D printed bone substitutes.3D 打印骨替代物的天然药物输送。
J Control Release. 2024 Jan;365:848-875. doi: 10.1016/j.jconrel.2023.09.025. Epub 2023 Dec 17.

本文引用的文献

1
Natural Medicinal Compounds in Bone Tissue Engineering.天然药用化合物在骨组织工程中的应用。
Trends Biotechnol. 2020 Apr;38(4):404-417. doi: 10.1016/j.tibtech.2019.11.005. Epub 2019 Dec 25.
3
Liposome-Encapsulated Curcumin-Loaded 3D Printed Scaffold for Bone Tissue Engineering.载姜黄素脂质体的 3D 打印支架用于骨组织工程
ACS Appl Mater Interfaces. 2019 May 15;11(19):17184-17192. doi: 10.1021/acsami.9b01218. Epub 2019 May 1.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验