Suppr超能文献

掺镁 3D 打印 TCP 支架促进骨再生过程中维生素 D3 的释放。

Vitamin D3 Release from MgO Doped 3D Printed TCP Scaffolds for Bone Regeneration.

机构信息

W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States.

出版信息

ACS Biomater Sci Eng. 2024 Mar 11;10(3):1676-1685. doi: 10.1021/acsbiomaterials.3c01779. Epub 2024 Feb 22.

Abstract

Regenerating bone tissue in critical-sized craniofacial bone defects remains challenging and requires the implementation of innovative bone implants with early stage osteogenesis and blood vessel formation. Vitamin D3 is incorporated into MgO-doped 3D-printed scaffolds for defect-specific and patient-specific implants in low load-bearing areas. This novel bone implant also promotes early stage osteogenesis and blood vessel development. Our results show that vitamin D3-loaded MgO-doped 3D-printed scaffolds enhance osteoblast cell proliferation 1.3-fold after being cultured for 7 days. Coculture studies on osteoblasts derived from human mesenchymal stem cells (hMSCs) and osteoclasts derived from monocytes show the upregulation of genes related to osteoblastogenesis and the downregulation of RANK-L, which is essential for osteoclastogenesis. Release of vitamin D3 also inhibits osteoclast differentiation by 1.9-fold after a 21-day culture. After 6 weeks, vitamin D3 release from MgO-doped 3D-printed scaffolds enhances the new bone formation, mineralization, and angiogenic potential. The multifunctional 3D-printed scaffolds can improve early stage osteogenesis and blood vessel formation in craniofacial bone defects.

摘要

在临界尺寸的颅面骨缺损中再生骨组织仍然具有挑战性,需要采用具有早期成骨和血管形成能力的创新型骨植入物。将维生素 D3 掺入到 MgO 掺杂的 3D 打印支架中,用于在低承载区域进行特定于缺损和特定于患者的植入物。这种新型骨植入物还可以促进早期成骨和血管发育。我们的结果表明,在培养 7 天后,负载维生素 D3 的 MgO 掺杂 3D 打印支架可使成骨细胞增殖 1.3 倍。对源自人骨髓间充质干细胞(hMSCs)的成骨细胞和源自单核细胞的破骨细胞的共培养研究表明,与成骨细胞生成相关的基因上调,而对破骨细胞生成至关重要的 RANK-L 下调。培养 21 天后,维生素 D3 的释放还使破骨细胞分化抑制 1.9 倍。6 周后,MgO 掺杂 3D 打印支架中维生素 D3 的释放增强了新骨形成、矿化和血管生成潜力。多功能 3D 打印支架可以改善颅面骨缺损中的早期成骨和血管形成。

相似文献

1
Vitamin D3 Release from MgO Doped 3D Printed TCP Scaffolds for Bone Regeneration.
ACS Biomater Sci Eng. 2024 Mar 11;10(3):1676-1685. doi: 10.1021/acsbiomaterials.3c01779. Epub 2024 Feb 22.
2
Magnesium-oxide-enhanced bone regeneration: 3D-printing of gelatin-coated composite scaffolds with sustained Rosuvastatin release.
Int J Biol Macromol. 2024 May;266(Pt 1):130995. doi: 10.1016/j.ijbiomac.2024.130995. Epub 2024 Mar 21.
3
SrO- and MgO-doped microwave sintered 3D printed tricalcium phosphate scaffolds: mechanical properties and in vivo osteogenesis in a rabbit model.
J Biomed Mater Res B Appl Biomater. 2015 Apr;103(3):679-90. doi: 10.1002/jbm.b.33239. Epub 2014 Jul 8.
4
and properties evaluation of curcumin loaded MgO doped 3D printed TCP scaffolds.
J Mater Chem B. 2023 May 31;11(21):4725-4739. doi: 10.1039/d2tb02547g.
5
Three-dimensional Printed Mg-Doped β-TCP Bone Tissue Engineering Scaffolds: Effects of Magnesium Ion Concentration on Osteogenesis and Angiogenesis .
Tissue Eng Regen Med. 2019 Jun 17;16(4):415-429. doi: 10.1007/s13770-019-00192-0. eCollection 2019 Aug.
9
Stem Cell-Seeded 3D-Printed Scaffolds Combined with Self-Assembling Peptides for Bone Defect Repair.
Tissue Eng Part A. 2022 Feb;28(3-4):111-124. doi: 10.1089/ten.TEA.2021.0055. Epub 2021 Dec 30.
10
Curcumin and vitamin D3 release from calcium phosphate enhances bone regeneration.
Biomater Sci. 2025 Mar 11;13(6):1568-1577. doi: 10.1039/d4bm01188k.

引用本文的文献

1
Three-Dimensionally Printed Scaffolds and Drug Delivery Systems in Treatment of Osteoporosis.
Biomimetics (Basel). 2025 Jul 1;10(7):429. doi: 10.3390/biomimetics10070429.

本文引用的文献

1
Recent Developments in Engineered Magnesium Scaffolds for Bone Tissue Engineering.
ACS Biomater Sci Eng. 2023 Jun 12;9(6):3010-3031. doi: 10.1021/acsbiomaterials.2c01510. Epub 2023 May 24.
2
and properties evaluation of curcumin loaded MgO doped 3D printed TCP scaffolds.
J Mater Chem B. 2023 May 31;11(21):4725-4739. doi: 10.1039/d2tb02547g.
3
Additive Manufacturing of Bioceramic Implants for Restoration Bone Engineering: Technologies, Advances, and Future Perspectives.
ACS Biomater Sci Eng. 2023 Mar 13;9(3):1164-1189. doi: 10.1021/acsbiomaterials.2c01164. Epub 2023 Feb 14.
4
Position Statement: Vitamin D Intake to Prevent Osteoporosis and Fracture in Adults.
J Bone Metab. 2022 Nov;29(4):205-215. doi: 10.11005/jbm.2022.29.4.205. Epub 2022 Nov 30.
5
RANKL-responsive epigenetic mechanism reprograms macrophages into bone-resorbing osteoclasts.
Cell Mol Immunol. 2023 Jan;20(1):94-109. doi: 10.1038/s41423-022-00959-x. Epub 2022 Dec 14.
6
Review of Physical, Mechanical, and Biological Characteristics of 3D-Printed Bioceramic Scaffolds for Bone Tissue Engineering Applications.
ACS Biomater Sci Eng. 2022 Dec 12;8(12):5060-5093. doi: 10.1021/acsbiomaterials.2c00793. Epub 2022 Nov 22.
7
Vitamin C epigenetically controls osteogenesis and bone mineralization.
Nat Commun. 2022 Oct 6;13(1):5883. doi: 10.1038/s41467-022-32915-8.
9
Bone remodeling: an operational process ensuring survival and bone mechanical competence.
Bone Res. 2022 Jul 18;10(1):48. doi: 10.1038/s41413-022-00219-8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验