Suppr超能文献

利用数字健康数据驱动的方法来理解人类行为。

Digital health data-driven approaches to understand human behavior.

作者信息

Marsch Lisa A

机构信息

Center for Technology and Behavioral Health, Geisel School of Medicine, Lebanon, NH, USA.

出版信息

Neuropsychopharmacology. 2021 Jan;46(1):191-196. doi: 10.1038/s41386-020-0761-5. Epub 2020 Jul 12.

Abstract

Advances in digital technologies and data analytics have created unparalleled opportunities to assess and modify health behavior and thus accelerate the ability of science to understand and contribute to improved health behavior and health outcomes. Digital health data capture the richness and granularity of individuals' behavior, the confluence of factors that impact behavior in the moment, and the within-individual evolution of behavior over time. These data may contribute to discovery science by revealing digital markers of health/risk behavior as well as translational science by informing personalized and timely models of intervention delivery. And they may help inform diagnostic classification of clinically problematic behavior and the clinical trajectories of diagnosable disorders over time. This manuscript provides a review of the state of the science of digital health data-driven approaches to understanding human behavior. It reviews methods of digital health assessment and sources of digital health data. It provides a synthesis of the scientific literature evaluating how digitally derived empirical data can inform our understanding of health behavior, with a particular focus on understanding the assessment, diagnosis and clinical trajectories of psychiatric disorders. And, it concludes with a discussion of future directions and timely opportunities in this line of research and its clinical application.

摘要

数字技术和数据分析的进步创造了前所未有的机会来评估和改变健康行为,从而加快科学理解并促进健康行为和健康结果改善的能力。数字健康数据捕捉了个体行为的丰富性和粒度、当下影响行为的各种因素的交汇以及个体行为随时间的演变。这些数据可能通过揭示健康/风险行为的数字标志物为发现科学做出贡献,并通过为个性化和及时的干预提供模型为转化科学做出贡献。它们还可能有助于为临床问题行为的诊断分类以及可诊断疾病随时间的临床轨迹提供信息。本手稿综述了数字健康数据驱动方法在理解人类行为方面的科学现状。它回顾了数字健康评估方法和数字健康数据来源。它综合了科学文献,评估数字衍生的实证数据如何增进我们对健康行为的理解,特别关注对精神障碍的评估、诊断和临床轨迹的理解。并且,它最后讨论了这一研究领域及其临床应用的未来方向和适时机遇。

相似文献

1
Digital health data-driven approaches to understand human behavior.
Neuropsychopharmacology. 2021 Jan;46(1):191-196. doi: 10.1038/s41386-020-0761-5. Epub 2020 Jul 12.
6
Digital Health and Addiction.
Curr Opin Syst Biol. 2020 Apr;20:1-7. doi: 10.1016/j.coisb.2020.07.004. Epub 2020 Jul 7.
7
The future of Cochrane Neonatal.
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.
8
The need for a behavioural science focus in research on mental health and mental disorders.
Int J Methods Psychiatr Res. 2014 Jan;23 Suppl 1(Suppl 1):28-40. doi: 10.1002/mpr.1409.
10
The Use of Mobile Assessments for Monitoring Mental Health in Youth: Umbrella Review.
J Med Internet Res. 2023 Sep 19;25:e45540. doi: 10.2196/45540.

引用本文的文献

5
Prescription Digital Therapeutics: An Emerging Treatment Option for Negative Symptoms in Schizophrenia.
Biol Psychiatry. 2024 Oct 15;96(8):659-665. doi: 10.1016/j.biopsych.2024.06.026. Epub 2024 Jul 1.
6
TanhReLU -based convolutional neural networks for MDD classification.
Front Psychiatry. 2024 May 31;15:1346838. doi: 10.3389/fpsyt.2024.1346838. eCollection 2024.
8
Tracking Chinese Online Activity and Interest in Osteoporosis Using the Baidu Index.
Cureus. 2024 Apr 5;16(4):e57644. doi: 10.7759/cureus.57644. eCollection 2024 Apr.
9
Personalized mood prediction from patterns of behavior collected with smartphones.
NPJ Digit Med. 2024 Feb 28;7(1):49. doi: 10.1038/s41746-024-01035-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验