Suppr超能文献

张量典型相关分析

Tensor canonical correlation analysis.

作者信息

Min Eun Jeong, Chi Eric C, Zhou Hua

机构信息

Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, 19104, PA, U.S.A.

Department of Statistics, North Carolina State University, Raleigh, 27695, NC, U.S.A.

出版信息

Stat. 2020;8(1). doi: 10.1002/sta4.253. Epub 2020 Jan 2.

Abstract

Canonical correlation analysis (CCA) is a multivariate analysis technique for estimating a linear relationship between two sets of measurements. Modern acquisition technologies, for example, those arising in neuroimaging and remote sensing, produce data in the form of multidimensional arrays or tensors. Classic CCA is not appropriate for dealing with tensor data due to the multidimensional structure and ultrahigh dimensionality of such modern data. In this paper, we present tensor CCA (TCCA) to discover relationships between two tensors while simultaneously preserving multidimensional structure of the tensors and utilizing substantially fewer parameters. Furthermore, we show how to employ a parsimonious covariance structure to gain additional stability and efficiency. We delineate population and sample problems for each model and propose efficient estimation algorithms with global convergence guarantees. Also we describe a probabilistic model for TCCA that enables the generation of synthetic data with desired canonical variates and correlations. Simulation studies illustrate the performance of our methods.

摘要

典型相关分析(CCA)是一种用于估计两组测量值之间线性关系的多元分析技术。现代采集技术,例如神经成像和遥感中出现的技术,会产生多维数组或张量形式的数据。由于此类现代数据的多维结构和超高维度,经典CCA不适用于处理张量数据。在本文中,我们提出了张量CCA(TCCA),以发现两个张量之间的关系,同时保留张量的多维结构并使用少得多的参数。此外,我们展示了如何采用简约协方差结构来获得额外的稳定性和效率。我们阐述了每个模型的总体和样本问题,并提出了具有全局收敛保证的高效估计算法。我们还描述了一种TCCA的概率模型,该模型能够生成具有所需典型变量和相关性的合成数据。模拟研究说明了我们方法的性能。

相似文献

1
Tensor canonical correlation analysis.
Stat. 2020;8(1). doi: 10.1002/sta4.253. Epub 2020 Jan 2.
2
Multi-Group Tensor Canonical Correlation Analysis.
ACM BCB. 2023 Sep;2023. doi: 10.1145/3584371.3612962. Epub 2023 Oct 4.
3
Tucker Tensor Regression and Neuroimaging Analysis.
Stat Biosci. 2018 Dec;10(3):520-545. doi: 10.1007/s12561-018-9215-6. Epub 2018 Mar 7.
4
MG-TCCA: Tensor Canonical Correlation Analysis across Multiple Groups.
IEEE/ACM Trans Comput Biol Bioinform. 2024 Sep 30;PP. doi: 10.1109/TCBB.2024.3471930.
5
Tensor Regression with Applications in Neuroimaging Data Analysis.
J Am Stat Assoc. 2013;108(502):540-552. doi: 10.1080/01621459.2013.776499.
6
TENSOR GENERALIZED ESTIMATING EQUATIONS FOR LONGITUDINAL IMAGING ANALYSIS.
Stat Sin. 2019;29(4):1977-2005. doi: 10.5705/ss.202017.0153.
7
Multiset canonical correlations analysis and multispectral, truly multitemporal remote sensing data.
IEEE Trans Image Process. 2002;11(3):293-305. doi: 10.1109/83.988962.
8
Canonical correlation analysis for multilabel classification: a least-squares formulation, extensions, and analysis.
IEEE Trans Pattern Anal Mach Intell. 2011 Jan;33(1):194-200. doi: 10.1109/TPAMI.2010.160.
9
Tracking online low-rank approximations of higher-order incomplete streaming tensors.
Patterns (N Y). 2023 Jun 9;4(6):100759. doi: 10.1016/j.patter.2023.100759.
10
A whitening approach to probabilistic canonical correlation analysis for omics data integration.
BMC Bioinformatics. 2019 Jan 9;20(1):15. doi: 10.1186/s12859-018-2572-9.

引用本文的文献

1
MG-TCCA: Tensor Canonical Correlation Analysis across Multiple Groups.
IEEE/ACM Trans Comput Biol Bioinform. 2024 Sep 30;PP. doi: 10.1109/TCBB.2024.3471930.
2
Fair Canonical Correlation Analysis.
Adv Neural Inf Process Syst. 2023 Dec;36:3675-3705.
3
Multi-Group Tensor Canonical Correlation Analysis.
ACM BCB. 2023 Sep;2023. doi: 10.1145/3584371.3612962. Epub 2023 Oct 4.
5
Preference Matrix Guided Sparse Canonical Correlation Analysis for Genetic Study of Quantitative Traits in Alzheimer's Disease.
Proceedings (IEEE Int Conf Bioinformatics Biomed). 2022 Dec;2022:541-548. doi: 10.1109/bibm55620.2022.9995342.
6
Multi-task learning based structured sparse canonical correlation analysis for brain imaging genetics.
Med Image Anal. 2022 Feb;76:102297. doi: 10.1016/j.media.2021.102297. Epub 2021 Nov 13.

本文引用的文献

1
Partially Observed Dynamic Tensor Response Regression.
J Am Stat Assoc. 2023;118(541):424-439. doi: 10.1080/01621459.2021.1938082. Epub 2021 Jul 19.
2
TENSOR GENERALIZED ESTIMATING EQUATIONS FOR LONGITUDINAL IMAGING ANALYSIS.
Stat Sin. 2019;29(4):1977-2005. doi: 10.5705/ss.202017.0153.
4
Tensor Regression with Applications in Neuroimaging Data Analysis.
J Am Stat Assoc. 2013;108(502):540-552. doi: 10.1080/01621459.2013.776499.
5
Voxelwise genome-wide association study (vGWAS).
Neuroimage. 2010 Nov 15;53(3):1160-74. doi: 10.1016/j.neuroimage.2010.02.032. Epub 2010 Feb 17.
6
Extensions of sparse canonical correlation analysis with applications to genomic data.
Stat Appl Genet Mol Biol. 2009;8(1):Article28. doi: 10.2202/1544-6115.1470. Epub 2009 Jun 9.
7
Quantifying the association between gene expressions and DNA-markers by penalized canonical correlation analysis.
Stat Appl Genet Mol Biol. 2008;7(1):Article3. doi: 10.2202/1544-6115.1329. Epub 2008 Jan 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验