Suppr超能文献

部分观测动态张量响应回归

Partially Observed Dynamic Tensor Response Regression.

作者信息

Zhou Jie, Sun Will Wei, Zhang Jingfei, Li Lexin

机构信息

Department of Management Science, University of Miami Herbert Business School, Miami, FL.

Krannert School of Management, Purdue University, West Lafayette, IN.

出版信息

J Am Stat Assoc. 2023;118(541):424-439. doi: 10.1080/01621459.2021.1938082. Epub 2021 Jul 19.

Abstract

In modern data science, dynamic tensor data prevail in numerous applications. An important task is to characterize the relationship between dynamic tensor datasets and external covariates. However, the tensor data are often only partially observed, rendering many existing methods inapplicable. In this article, we develop a regression model with a partially observed dynamic tensor as the response and external covariates as the predictor. We introduce the low-rankness, sparsity, and fusion structures on the regression coefficient tensor, and consider a loss function projected over the observed entries. We develop an efficient nonconvex alternating updating algorithm, and derive the finite-sample error bound of the actual estimator from each step of our optimization algorithm. Unobserved entries in the tensor response have imposed serious challenges. As a result, our proposal differs considerably in terms of estimation algorithm, regularity conditions, as well as theoretical properties, compared to the existing tensor completion or tensor response regression solutions. We illustrate the efficacy of our proposed method using simulations and two real applications, including a neuroimaging dementia study and a digital advertising study.

摘要

在现代数据科学中,动态张量数据在众多应用中广泛存在。一项重要任务是刻画动态张量数据集与外部协变量之间的关系。然而,张量数据往往只是部分可观测的,这使得许多现有方法无法适用。在本文中,我们开发了一种回归模型,以部分可观测的动态张量作为响应变量,外部协变量作为预测变量。我们在回归系数张量上引入低秩性、稀疏性和融合结构,并考虑在观测值上投影的损失函数。我们开发了一种高效的非凸交替更新算法,并从优化算法的每一步推导实际估计量的有限样本误差界。张量响应中的未观测值带来了严峻挑战。因此,与现有的张量补全或张量响应回归解决方案相比,我们的提议在估计算法、正则条件以及理论性质方面有很大不同。我们通过模拟和两个实际应用展示了所提方法的有效性,其中包括一项神经影像痴呆症研究和一项数字广告研究。

相似文献

1
Partially Observed Dynamic Tensor Response Regression.部分观测动态张量响应回归
J Am Stat Assoc. 2023;118(541):424-439. doi: 10.1080/01621459.2021.1938082. Epub 2021 Jul 19.
2
Low Rank Tensor Completion With Poisson Observations.带泊松观测值的低秩张量补全
IEEE Trans Pattern Anal Mach Intell. 2022 Aug;44(8):4239-4251. doi: 10.1109/TPAMI.2021.3059299. Epub 2022 Jul 1.
3
Noisy Tensor Completion via Low-Rank Tensor Ring.基于低秩张量环的噪声张量补全
IEEE Trans Neural Netw Learn Syst. 2022 Jun 17;PP. doi: 10.1109/TNNLS.2022.3181378.
6
Coarse to Fine Two-Stage Approach to Robust Tensor Completion of Visual Data.
IEEE Trans Cybern. 2024 Jan;54(1):136-149. doi: 10.1109/TCYB.2022.3198932. Epub 2023 Dec 20.
10
Multivariate Temporal Point Process Regression.多元时间点过程回归
J Am Stat Assoc. 2023;118(542):830-845. doi: 10.1080/01621459.2021.1955690. Epub 2021 Sep 1.

引用本文的文献

1
Envelope method with ignorable missing data.带有可忽略缺失数据的包络法。
Electron J Stat. 2021;15(2):4420-4461. doi: 10.1214/21-ejs1881. Epub 2021 Sep 14.
3
Tensor response quantile regression with neuroimaging data.张量响应分位数回归与神经影像学数据。
Biometrics. 2023 Sep;79(3):1947-1958. doi: 10.1111/biom.13809. Epub 2022 Dec 27.
4
Sparse and Low-rank Tensor Estimation via Cubic Sketchings.基于三次草图的稀疏和低秩张量估计
IEEE Trans Inf Theory. 2020 Sep;66(9):5927-5964. doi: 10.1109/tit.2020.2982499. Epub 2020 Mar 23.
5
L2RM: Low-rank Linear Regression Models for High-dimensional Matrix Responses.L2RM:用于高维矩阵响应的低秩线性回归模型
J Am Stat Assoc. 2020 Apr 30;115(529):403-424. doi: 10.1080/01621459.2018.1555092. Epub 2019 Apr 30.
6
Tensor canonical correlation analysis.张量典型相关分析
Stat. 2020;8(1). doi: 10.1002/sta4.253. Epub 2020 Jan 2.
8
Tensor-on-tensor regression.张量对张量回归
J Comput Graph Stat. 2018;27(3):638-647. doi: 10.1080/10618600.2017.1401544. Epub 2018 Jun 6.
9
Supervised multiway factorization.监督式多路分解
Electron J Stat. 2018;12(1):1150-1180. doi: 10.1214/18-EJS1421. Epub 2018 Mar 27.
10
Groupwise envelope models for imaging genetic analysis.用于成像遗传分析的分组包络模型。
Biometrics. 2017 Dec;73(4):1243-1253. doi: 10.1111/biom.12689. Epub 2017 Mar 21.

本文引用的文献

2
Sparse and Low-rank Tensor Estimation via Cubic Sketchings.基于三次草图的稀疏和低秩张量估计
IEEE Trans Inf Theory. 2020 Sep;66(9):5927-5964. doi: 10.1109/tit.2020.2982499. Epub 2020 Mar 23.
3
Bayesian Scalar on Image Regression With Nonignorable Nonresponse.具有不可忽略的无应答的图像回归中的贝叶斯标量
J Am Stat Assoc. 2020;115(532):1574-1597. doi: 10.1080/01621459.2019.1686391. Epub 2019 Dec 12.
5
Generalized Scalar-on-Image Regression Models via Total Variation.基于全变差的广义图像上标量回归模型
J Am Stat Assoc. 2017;112(519):1156-1168. doi: 10.1080/01621459.2016.1194846. Epub 2017 Apr 13.
8
Structural pursuit over multiple undirected graphs.多个无向图上的结构追踪
J Am Stat Assoc. 2014 Oct;109(508):1683-1696. doi: 10.1080/01621459.2014.921182.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验