Wang Zhaoran, Gu Quanquan, Ning Yang, Liu Han
Department of Operations Research and Financial Engineering, Princeton University, Princeton, NJ 08544, USA.
Adv Neural Inf Process Syst. 2015;28:2512-2520.
We provide a general theory of the expectation-maximization (EM) algorithm for inferring high dimensional latent variable models. In particular, we make two contributions: (i) For parameter estimation, we propose a novel high dimensional EM algorithm which naturally incorporates sparsity structure into parameter estimation. With an appropriate initialization, this algorithm converges at a geometric rate and attains an estimator with the (near-)optimal statistical rate of convergence. (ii) Based on the obtained estimator, we propose new inferential procedures for testing hypotheses and constructing confidence intervals for low dimensional components of high dimensional parameters. For a broad family of statistical models, our framework establishes the first computationally feasible approach for optimal estimation and asymptotic inference in high dimensions. Our theory is supported by thorough numerical results.
我们提供了一种用于推断高维潜变量模型的期望最大化(EM)算法的通用理论。具体而言,我们做出了两项贡献:(i)对于参数估计,我们提出了一种新颖的高维EM算法,该算法自然地将稀疏结构纳入参数估计中。通过适当的初始化,该算法以几何速率收敛,并获得具有(近)最优统计收敛速率的估计器。(ii)基于获得的估计器,我们提出了新的推断程序,用于检验假设并为高维参数的低维分量构建置信区间。对于广泛的统计模型家族,我们的框架建立了第一种用于高维最优估计和渐近推断的计算可行方法。我们的理论得到了全面数值结果的支持。