Suppr超能文献

高维期望最大化算法:统计优化与渐近正态性

High Dimensional EM Algorithm: Statistical Optimization and Asymptotic Normality.

作者信息

Wang Zhaoran, Gu Quanquan, Ning Yang, Liu Han

机构信息

Department of Operations Research and Financial Engineering, Princeton University, Princeton, NJ 08544, USA.

出版信息

Adv Neural Inf Process Syst. 2015;28:2512-2520.

Abstract

We provide a general theory of the expectation-maximization (EM) algorithm for inferring high dimensional latent variable models. In particular, we make two contributions: (i) For parameter estimation, we propose a novel high dimensional EM algorithm which naturally incorporates sparsity structure into parameter estimation. With an appropriate initialization, this algorithm converges at a geometric rate and attains an estimator with the (near-)optimal statistical rate of convergence. (ii) Based on the obtained estimator, we propose new inferential procedures for testing hypotheses and constructing confidence intervals for low dimensional components of high dimensional parameters. For a broad family of statistical models, our framework establishes the first computationally feasible approach for optimal estimation and asymptotic inference in high dimensions. Our theory is supported by thorough numerical results.

摘要

我们提供了一种用于推断高维潜变量模型的期望最大化(EM)算法的通用理论。具体而言,我们做出了两项贡献:(i)对于参数估计,我们提出了一种新颖的高维EM算法,该算法自然地将稀疏结构纳入参数估计中。通过适当的初始化,该算法以几何速率收敛,并获得具有(近)最优统计收敛速率的估计器。(ii)基于获得的估计器,我们提出了新的推断程序,用于检验假设并为高维参数的低维分量构建置信区间。对于广泛的统计模型家族,我们的框架建立了第一种用于高维最优估计和渐近推断的计算可行方法。我们的理论得到了全面数值结果的支持。

相似文献

2
Tensor Graphical Model: Non-Convex Optimization and Statistical Inference.张量图形模型:非凸优化与统计推断
IEEE Trans Pattern Anal Mach Intell. 2020 Aug;42(8):2024-2037. doi: 10.1109/TPAMI.2019.2907679. Epub 2019 Mar 26.
6
Gaussian variational estimation for multidimensional item response theory.多维项目反应理论的高斯变分估计。
Br J Math Stat Psychol. 2021 Jul;74 Suppl 1:52-85. doi: 10.1111/bmsp.12219. Epub 2020 Oct 16.
7
De-Biased Graphical Lasso for High-Frequency Data.用于高频数据的去偏图形拉索法
Entropy (Basel). 2020 Apr 17;22(4):456. doi: 10.3390/e22040456.
9
Testing and Confidence Intervals for High Dimensional Proportional Hazards Model.高维比例风险模型的检验与置信区间
J R Stat Soc Series B Stat Methodol. 2017 Nov;79(5):1415-1437. doi: 10.1111/rssb.12224. Epub 2016 Dec 26.

本文引用的文献

1
A SIGNIFICANCE TEST FOR THE LASSO.套索(LASSO)的显著性检验
Ann Stat. 2014 Apr;42(2):413-468. doi: 10.1214/13-AOS1175.
2
HIGH DIMENSIONAL VARIABLE SELECTION.高维变量选择
Ann Stat. 2009 Jan 1;37(5A):2178-2201. doi: 10.1214/08-aos646.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验