V.I. Vernadsky Crimean Federal University, Simferopol, Russia.
Inflamm Res. 2020 Sep;69(9):801-812. doi: 10.1007/s00011-020-01377-3. Epub 2020 Jul 12.
During the current COVID-19 pandemic, the global ratio between the dead and the survivors is approximately 1 to 10, which has put humanity on high alert and provided strong motivation for the intensive search for vaccines and drugs. It is already clear that if we follow the most likely scenario, which is similar to that used to create seasonal influenza vaccines, then we will need to develop improved vaccine formulas every year to control the spread of the new, highly mutable coronavirus SARS-CoV-2. In this article, using well-known RNA viruses (HIV, influenza viruses, HCV) as examples, we consider the main successes and failures in creating primarily highly effective vaccines. The experience accumulated dealing with the biology of zoonotic RNA viruses suggests that the fight against COVID-19 will be difficult and lengthy. The most effective vaccines against SARS-CoV-2 will be those able to form highly effective memory cells for both humoral (memory B cells) and cellular (cross-reactive antiviral memory T cells) immunity. Unfortunately, RNA viruses constantly sweep their tracks and perhaps one of the most promising solutions in the fight against the COVID-19 pandemic is the creation of 'universal' vaccines based on conservative SARS-CoV-2 genome sequences (antigen-presenting) and unmethylated CpG dinucleotides (adjuvant) in the composition of the phosphorothioate backbone of single-stranded DNA oligonucleotides (ODN), which can be effective for long periods of use. Here, we propose a SARS-CoV-2 vaccine based on a lasso-like phosphorothioate oligonucleotide construction containing CpG motifs and the antigen-presenting unique ACG-containing genome sequence of SARS-CoV-2. We found that CpG dinucleotides are the most rare dinucleotides in the genomes of SARS-CoV-2 and other known human coronaviruses, and hypothesized that their higher frequency could be responsible for the unwanted increased lethality to the host, causing a 'cytokine storm' in people who overexpress cytokines through the activation of specific Toll-like receptors in a manner similar to TLR9-CpG ODN interactions. Interestingly, the virus strains sequenced in China (Wuhan) in February 2020 contained on average one CpG dinucleotide more in their genome than the later strains from the USA (New York) sequenced in May 2020. Obviously, during the first steps of the microevolution of SARS-CoV-2 in the human population, natural selection tends to select viral genomes containing fewer CpG motifs that do not trigger a strong innate immune response, so the infected person has moderate symptoms and spreads SARS-CoV-2 more readily. However, in our opinion, unmethylated CpG dinucleotides are also capable of preparing the host immune system for the coronavirus infection and should be present in SARS-CoV-2 vaccines as strong adjuvants.
在当前的 COVID-19 大流行期间,全球死亡人数与幸存者人数之比约为 1:10,这使人类处于高度戒备状态,并为疫苗和药物的密集研发提供了强大动力。目前已经很清楚,如果我们遵循最有可能的情况,即类似于季节性流感疫苗的情况,那么我们每年都需要开发改进的疫苗配方来控制新型、高度易变的冠状病毒 SARS-CoV-2 的传播。在本文中,我们使用众所周知的 RNA 病毒(HIV、流感病毒、HCV)作为示例,考虑了在主要开发高度有效的疫苗方面的主要成功和失败。在应对人畜共患 RNA 病毒生物学方面积累的经验表明,与 COVID-19 的斗争将是困难和漫长的。针对 SARS-CoV-2 的最有效疫苗将是那些能够针对体液(记忆 B 细胞)和细胞(交叉反应性抗病毒记忆 T 细胞)免疫形成高度有效的记忆细胞的疫苗。不幸的是,RNA 病毒不断清除其痕迹,也许在 COVID-19 大流行的斗争中最有希望的解决方案之一是基于保守的 SARS-CoV-2 基因组序列(抗原呈递)和未甲基化的 CpG 二核苷酸(佐剂)的“通用”疫苗的创建,这些疫苗可以在单链 DNA 寡核苷酸(ODN)的磷硫代骨架组成中有效使用很长时间。在这里,我们提出了一种基于包含 CpG 基序和 SARS-CoV-2 独特的抗原呈递 ACG 基因组序列的套索样磷硫代寡核苷酸构建体的 SARS-CoV-2 疫苗。我们发现 CpG 二核苷酸是 SARS-CoV-2 和其他已知人类冠状病毒基因组中最罕见的二核苷酸,并且假设它们的更高频率可能导致对宿主的不必要的更高致死性,导致“细胞因子风暴”在通过类似于 TLR9-CpG ODN 相互作用的方式激活特定 Toll 样受体而过度表达细胞因子的人中。有趣的是,2020 年 2 月在中国(武汉)测序的病毒株在其基因组中平均比 2020 年 5 月来自美国(纽约)的后期株多一个 CpG 二核苷酸。显然,在 SARS-CoV-2 在人群中的微进化的最初步骤中,自然选择倾向于选择包含较少 CpG 基序的病毒基因组,这些基序不会引发强烈的先天免疫反应,因此感染者的症状较轻,更容易传播 SARS-CoV-2。然而,在我们看来,未甲基化的 CpG 二核苷酸也能够使宿主免疫系统为冠状病毒感染做好准备,并且应该作为强有力的佐剂存在于 SARS-CoV-2 疫苗中。