利用内表型和网络医学进行阿尔茨海默病药物再利用。

Harnessing endophenotypes and network medicine for Alzheimer's drug repurposing.

机构信息

Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.

Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.

出版信息

Med Res Rev. 2020 Nov;40(6):2386-2426. doi: 10.1002/med.21709. Epub 2020 Jul 13.

Abstract

Following two decades of more than 400 clinical trials centered on the "one drug, one target, one disease" paradigm, there is still no effective disease-modifying therapy for Alzheimer's disease (AD). The inherent complexity of AD may challenge this reductionist strategy. Recent observations and advances in network medicine further indicate that AD likely shares common underlying mechanisms and intermediate pathophenotypes, or endophenotypes, with other diseases. In this review, we consider AD pathobiology, disease comorbidity, pleiotropy, and therapeutic development, and construct relevant endophenotype networks to guide future therapeutic development. Specifically, we discuss six main endophenotype hypotheses in AD: amyloidosis, tauopathy, neuroinflammation, mitochondrial dysfunction, vascular dysfunction, and lysosomal dysfunction. We further consider how this endophenotype network framework can provide advances in computational and experimental strategies for drug-repurposing and identification of new candidate therapeutic strategies for patients suffering from or at risk for AD. We highlight new opportunities for endophenotype-informed, drug discovery in AD, by exploiting multi-omics data. Integration of genomics, transcriptomics, radiomics, pharmacogenomics, and interactomics (protein-protein interactions) are essential for successful drug discovery. We describe experimental technologies for AD drug discovery including human induced pluripotent stem cells, transgenic mouse/rat models, and population-based retrospective case-control studies that may be integrated with multi-omics in a network medicine methodology. In summary, endophenotype-based network medicine methodologies will promote AD therapeutic development that will optimize the usefulness of available data and support deep phenotyping of the patient heterogeneity for personalized medicine in AD.

摘要

在以“一种药物、一个靶点、一种疾病”为中心的二十年里,进行了超过 400 项临床试验,但阿尔茨海默病(AD)仍然没有有效的疾病修饰疗法。AD 的固有复杂性可能会对这种简化策略提出挑战。网络医学的最新观察和进展进一步表明,AD 可能与其他疾病共享共同的潜在机制和中间表型或内表型。在这篇综述中,我们考虑了 AD 的病理生物学、疾病共病、多效性和治疗开发,并构建了相关的内表型网络,以指导未来的治疗开发。具体来说,我们讨论了 AD 中的六个主要内表型假说:淀粉样变性、tau 病、神经炎症、线粒体功能障碍、血管功能障碍和溶酶体功能障碍。我们进一步考虑了如何通过这种内表型网络框架,为药物再利用和识别新的候选治疗策略提供计算和实验策略方面的进展,以治疗患有 AD 或有患 AD 风险的患者。我们通过利用多组学数据,强调了内表型指导的 AD 药物发现的新机会。基因组学、转录组学、影像组学、药物基因组学和相互作用组学(蛋白质-蛋白质相互作用)的整合对于成功的药物发现至关重要。我们描述了 AD 药物发现的实验技术,包括人类诱导多能干细胞、转基因小鼠/大鼠模型和基于人群的回顾性病例对照研究,这些技术可以与网络医学方法中的多组学进行整合。总之,基于内表型的网络医学方法将促进 AD 治疗的发展,优化现有数据的使用,并支持 AD 个体化医学中对患者异质性的深入表型分析。

相似文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索