Helmholtz Center for Environmental Research GmbH - UFZ, Department of Environmental Microbiology, Permoserstraße 15, 04318, Leipzig, Germany.
DECHEMA Research Institute, Industrial Biotechnology, Theodor-Heuss-Allee 25, 60486, Frankfurt am Main, Germany.
ChemSusChem. 2020 Oct 7;13(19):5295-5300. doi: 10.1002/cssc.202001272. Epub 2020 Aug 17.
Power-to-X technologies have the potential to pave the way towards a future resource-secure bioeconomy as they enable the exploitation of renewable resources and CO . Herein, the coupled electrocatalytic and microbial catalysis of the C -polymer precursors mesaconate and 2S-methylsuccinate from CO and electric energy by in situ coupling electrochemical and microbial catalysis at 1 L-scale was developed. In the first phase, 6.1±2.5 mm formate was produced by electrochemical CO reduction. In the second phase, formate served as the substrate for microbial catalysis by an engineered strain of Methylobacterium extorquens AM-1 producing 7±2 μm and 10±5 μm of mesaconate and 2S-methylsuccinate, respectively. The proof of concept showed an overall conversion efficiency of 0.2 % being 0.4 % of the theoretical maximum.
Power-to-X 技术有可能为未来资源安全的生物经济铺平道路,因为它们能够利用可再生资源和 CO。在此,通过原位耦合电化学和微生物催化,在 1 L 规模上,利用 CO 和电能对 C-聚合物前体间戊二酸盐和 2S-甲基琥珀酸盐进行电催化和微生物催化耦合,开发了该技术。在第一阶段,通过电化学 CO 还原生成 6.1±2.5 mm 甲酸盐。在第二阶段,甲酸盐作为工程化的甲基杆菌(Methylobacterium extorquens AM-1)菌株的微生物催化的底物,分别生成 7±2 μm 和 10±5 μm 的间戊二酸盐和 2S-甲基琥珀酸盐。概念验证表明,总体转化率为 0.2%,是理论最大值的 0.4%。