Suppr超能文献

质体转化:它是如何工作的?可以应用于作物吗?它能带来什么?

Plastid Transformation: How Does it Work? Can it Be Applied to Crops? What Can it Offer?

机构信息

College of Forestry, Henan University of Science and Technology, Luoyang 471023, Henan Province, China.

Department of Chemistry, Temple University, Philadelphia, PA 19122, USA.

出版信息

Int J Mol Sci. 2020 Jul 9;21(14):4854. doi: 10.3390/ijms21144854.

Abstract

In recent years, plant genetic engineering has advanced agriculture in terms of crop improvement, stress and disease resistance, and pharmaceutical biosynthesis. Cells from land plants and algae contain three organelles that harbor DNA: the nucleus, plastid, and mitochondria. Although the most common approach for many plant species is the introduction of foreign DNA into the nucleus (nuclear transformation) via Agrobacterium- or biolistics-mediated delivery of transgenes, plastid transformation offers an alternative means for plant transformation. Since there are many copies of the chloroplast genome in each cell, higher levels of protein accumulation can often be achieved from transgenes inserted in the chloroplast genome compared to the nuclear genome. Chloroplasts are therefore becoming attractive hosts for the introduction of new agronomic traits, as well as for the biosynthesis of high-value pharmaceuticals, biomaterials and industrial enzymes. This review provides a comprehensive historical and biological perspective on plastid transformation, with a focus on current and emerging approaches such as the use of single-walled carbon nanotubes (SWNTs) as DNA delivery vehicles, overexpressing morphogenic regulators to enhance regeneration ability, applying genome editing techniques to accelerate double-stranded break formation, and reconsidering protoplasts as a viable material for plastid genome engineering, even in transformation-recalcitrant species.

摘要

近年来,植物基因工程在作物改良、抗逆和抗病以及药物生物合成方面推动了农业的发展。陆地植物和藻类的细胞包含三个含有 DNA 的细胞器:细胞核、质体和线粒体。虽然对于许多植物物种来说,最常见的方法是通过农杆菌或生物弹介导的转基因传递将外源 DNA 导入细胞核(核转化),但质体转化为植物转化提供了另一种方法。由于每个细胞中都有许多叶绿体基因组的拷贝,因此与核基因组相比,插入叶绿体基因组中的转基因通常可以实现更高水平的蛋白质积累。因此,叶绿体正成为引入新的农艺性状以及生物合成高价值药物、生物材料和工业酶的有吸引力的宿主。本文全面回顾了质体转化的历史和生物学观点,重点介绍了当前和新兴的方法,如将单壁碳纳米管 (SWNTs) 用作 DNA 传递载体、过表达形态发生调节剂以增强再生能力、应用基因组编辑技术加速双链断裂形成,以及重新考虑原生质体作为质体基因组工程的可行材料,即使在转化抗性物种中也是如此。

相似文献

1
Plastid Transformation: How Does it Work? Can it Be Applied to Crops? What Can it Offer?
Int J Mol Sci. 2020 Jul 9;21(14):4854. doi: 10.3390/ijms21144854.
2
Stable transformation of the cotton plastid genome and maternal inheritance of transgenes.
Plant Mol Biol. 2004 Sep;56(2):203-16. doi: 10.1007/s11103-004-2907-y.
3
Transgenic plastids in basic research and plant biotechnology.
J Mol Biol. 2001 Sep 21;312(3):425-38. doi: 10.1006/jmbi.2001.4960.
4
Breakthrough in chloroplast genetic engineering of agronomically important crops.
Trends Biotechnol. 2005 May;23(5):238-45. doi: 10.1016/j.tibtech.2005.03.008.
5
Genetic engineering of the chloroplast: novel tools and new applications.
Curr Opin Biotechnol. 2014 Apr;26:7-13. doi: 10.1016/j.copbio.2013.06.004. Epub 2013 Aug 31.
6
Engineering plastid genomes: methods, tools, and applications in basic research and biotechnology.
Annu Rev Plant Biol. 2015;66:211-41. doi: 10.1146/annurev-arplant-050213-040212. Epub 2014 Dec 1.
7
Advancing organelle genome transformation and editing for crop improvement.
Plant Commun. 2021 Jan 4;2(2):100141. doi: 10.1016/j.xplc.2021.100141. eCollection 2021 Mar 8.
8
High-efficiency generation of fertile transplastomic Arabidopsis plants.
Nat Plants. 2019 Mar;5(3):282-289. doi: 10.1038/s41477-019-0359-2. Epub 2019 Feb 18.
9
Challenges and perspectives in commercializing plastid transformation technology.
J Exp Bot. 2016 Nov;67(21):5945-5960. doi: 10.1093/jxb/erw360. Epub 2016 Oct 3.
10
Plastid Transformation in Sugar Beet: An Important Industrial Crop.
Methods Mol Biol. 2021;2317:283-290. doi: 10.1007/978-1-0716-1472-3_16.

引用本文的文献

3
Plant genetic transformation: achievements, current status and future prospects.
Plant Biotechnol J. 2025 Jun;23(6):2034-2058. doi: 10.1111/pbi.70028. Epub 2025 Mar 7.
4
5
6
Cytoplasmic male sterility-based hybrids: mechanistic insights.
Planta. 2024 Sep 20;260(4):100. doi: 10.1007/s00425-024-04532-w.
7
TALE-based organellar genome editing and gene expression in plants.
Plant Cell Rep. 2024 Feb 10;43(3):61. doi: 10.1007/s00299-024-03150-w.
8
Poaceae Chloroplast Genome Sequencing: Great Leap Forward in Recent Ten Years.
Curr Genomics. 2023 Feb 14;23(6):369-384. doi: 10.2174/1389202924666221201140603.
10
Particle bombardment-assisted peptide-mediated gene transfer for highly efficient transient assay.
BMC Res Notes. 2023 Apr 6;16(1):46. doi: 10.1186/s13104-023-06320-3.

本文引用的文献

1
Targeted delivery of nanomaterials with chemical cargoes in plants enabled by a biorecognition motif.
Nat Commun. 2020 Apr 27;11(1):2045. doi: 10.1038/s41467-020-15731-w.
2
Chloroplast genome transformation of medicinal plant Artemisia annua.
Plant Biotechnol J. 2020 Nov;18(11):2155-2157. doi: 10.1111/pbi.13379. Epub 2020 Aug 20.
3
Overcoming bottlenecks in plant gene editing.
Curr Opin Plant Biol. 2020 Apr;54:79-84. doi: 10.1016/j.pbi.2020.01.002. Epub 2020 Mar 3.
4
Cas9/gRNA-mediated genome editing of yeast mitochondria and chloroplasts.
PeerJ. 2020 Jan 6;8:e8362. doi: 10.7717/peerj.8362. eCollection 2020.
5
Plant gene editing through de novo induction of meristems.
Nat Biotechnol. 2020 Jan;38(1):84-89. doi: 10.1038/s41587-019-0337-2. Epub 2019 Dec 16.
6
Construction of a species-specific vector for improved plastid transformation efficiency in L.
3 Biotech. 2019 Jun;9(6):226. doi: 10.1007/s13205-019-1747-z. Epub 2019 May 21.
7
Validation of leaf and microbial pectinases: commercial launching of a new platform technology.
Plant Biotechnol J. 2019 Jun;17(6):1154-1166. doi: 10.1111/pbi.13119. Epub 2019 Apr 26.
8
Chloroplast-selective gene delivery and expression in planta using chitosan-complexed single-walled carbon nanotube carriers.
Nat Nanotechnol. 2019 May;14(5):447-455. doi: 10.1038/s41565-019-0375-4. Epub 2019 Feb 25.
9
High-efficiency generation of fertile transplastomic Arabidopsis plants.
Nat Plants. 2019 Mar;5(3):282-289. doi: 10.1038/s41477-019-0359-2. Epub 2019 Feb 18.
10
Stable plastid transformation of rice, a monocot cereal crop.
Biochem Biophys Res Commun. 2018 Sep 18;503(4):2376-2379. doi: 10.1016/j.bbrc.2018.06.164. Epub 2018 Jul 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验