Suppr超能文献

加泰罗尼亚自杀风险代码流行病学(CSRC-Epi)研究:西班牙加泰罗尼亚地区自杀未遂的人群代表性巢式病例对照研究方案。

Catalonia Suicide Risk Code Epidemiology (CSRC-Epi) study: protocol for a population-representative nested case-control study of suicide attempts in Catalonia, Spain.

机构信息

Health Services Research Group, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain

CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.

出版信息

BMJ Open. 2020 Jul 12;10(7):e037365. doi: 10.1136/bmjopen-2020-037365.

Abstract

INTRODUCTION

Suicide attempts represent an important public health burden. Centralised electronic health record (EHR) systems have high potential to provide suicide attempt surveillance, to inform public health action aimed at reducing risk for suicide attempt in the population, and to provide data-driven clinical decision support for suicide risk assessment across healthcare settings. To exploit this potential, we designed the Catalonia Suicide Risk Code Epidemiology (CSRC-Epi) study. Using centralised EHR data from the entire public healthcare system of Catalonia, Spain, the CSRC-Epi study aims to estimate reliable suicide attempt incidence rates, identify suicide attempt risk factors and develop validated suicide attempt risk prediction tools.

METHODS AND ANALYSIS

The CSRC-Epi study is registry-based study, specifically, a two-stage exposure-enriched nested case-control study of suicide attempts during the period 2014-2019 in Catalonia, Spain. The primary study outcome consists of first and repeat attempts during the observation period. Cases will come from a case register linked to a suicide attempt surveillance programme, which offers in-depth psychiatric evaluations to all Catalan residents who present to clinical care with any suspected risk for suicide. Predictor variables will come from centralised EHR systems representing all relevant healthcare settings. The study's sampling frame will be constructed using population-representative administrative lists of Catalan residents. Inverse probability weights will restore representativeness of the original population. Analysis will include the calculation of age-standardised and sex-standardised suicide attempt incidence rates. Logistic regression will identify suicide attempt risk factors on the individual level (ie, relative risk) and the population level (ie, population attributable risk proportions). Machine learning techniques will be used to develop suicide attempt risk prediction tools.

ETHICS AND DISSEMINATION

This protocol is approved by the Parc de Salut Mar Clinical Research Ethics Committee (2017/7431/I). Dissemination will include peer-reviewed scientific publications, scientific reports for hospital and government authorities, and updated clinical guidelines.

TRIAL REGISTRATION NUMBER

NCT04235127.

摘要

简介

自杀未遂是一个重要的公共卫生负担。集中式电子健康记录 (EHR) 系统具有提供自杀未遂监测的巨大潜力,可用于为降低人群自杀未遂风险的公共卫生行动提供信息,并为跨医疗保健环境的自杀风险评估提供数据驱动的临床决策支持。为了利用这一潜力,我们设计了加泰罗尼亚自杀风险代码流行病学 (CSRC-Epi) 研究。该研究使用来自西班牙加泰罗尼亚整个公共医疗保健系统的集中式 EHR 数据,旨在估计可靠的自杀未遂发生率,确定自杀未遂的危险因素,并开发经过验证的自杀未遂风险预测工具。

方法和分析

CSRC-Epi 研究是一项基于登记的研究,具体来说,是一项在 2014 年至 2019 年期间在加泰罗尼亚进行的两阶段暴露增强嵌套病例对照研究,旨在研究自杀未遂。主要研究结果包括观察期内的首次和重复尝试。病例将来自一个与自杀未遂监测计划相关联的病例登记处,该计划为所有因任何自杀风险而到临床就诊的加泰罗尼亚居民提供深入的精神病学评估。预测变量将来自代表所有相关医疗保健环境的集中式 EHR 系统。该研究的抽样框架将使用加泰罗尼亚居民的代表性行政名单构建。逆概率权重将恢复原始人群的代表性。分析将包括计算年龄标准化和性别标准化的自杀未遂发生率。逻辑回归将确定个体水平(即相对风险)和人群水平(即人群归因风险比例)的自杀未遂危险因素。机器学习技术将用于开发自杀未遂风险预测工具。

伦理和传播

本方案已获得 Parc de Salut Mar 临床研究伦理委员会(2017/7431/I)的批准。传播将包括同行评议的科学出版物、为医院和政府当局编写的科学报告,以及更新的临床指南。

试验注册编号

NCT04235127。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ed4/7359191/02108bf388f0/bmjopen-2020-037365f01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验