Suppr超能文献

基于空气污染和气象因素的韩国干眼症发生率预测模型:次区域差异分析。

Prediction Model for Dry Eye Syndrome Incidence Rate Using Air Pollutants and Meteorological Factors in South Korea: Analysis of Sub-Region Deviations.

机构信息

Department of Environmental Engineering, Inha University, Incheon 22212, Korea.

Department of Ophthalmology, Hallym University, Dongtan Sacred Heart Hospital, Hwaseong-si 18450, Korea.

出版信息

Int J Environ Res Public Health. 2020 Jul 10;17(14):4969. doi: 10.3390/ijerph17144969.

Abstract

Here, we develop a dry eye syndrome (DES) incidence rate prediction model using air pollutants (PM, NO, SO, O, and CO), meteorological factors (temperature, humidity, and wind speed), population rate, and clinical data for South Korea. The prediction model is well fitted to the incidence rate (R = 0.9443 and 0.9388, < 2.2 × 10). To analyze regional deviations, we classify outpatient data, air pollutant, and meteorological factors in 16 administrative districts (seven metropolitan areas and nine states). Our results confirm NO and relative humidity are the factors impacting regional deviations in the prediction model.

摘要

在这里,我们利用空气污染物(PM、NO、SO、O 和 CO)、气象因素(温度、湿度和风速)、人口率和临床数据,为韩国开发了一种干眼症综合征(DES)发病率预测模型。预测模型很好地拟合了发病率(R = 0.9443 和 0.9388,<2.2×10)。为了分析区域偏差,我们将门诊数据、空气污染物和气象因素按 16 个行政区(七个大都市区和九个州)进行分类。我们的结果证实,NO 和相对湿度是影响预测模型中区域偏差的因素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/92e7/7399894/a8567758c3c5/ijerph-17-04969-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验