State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P. R. China.
ACS Appl Mater Interfaces. 2020 Aug 19;12(33):36882-36894. doi: 10.1021/acsami.0c09110. Epub 2020 Aug 7.
Clinically approved doxorubicin (Dox)-loaded liposomes (e.g., Doxil) guarantee good biosafety, but their insufficient nuclear delivery of Dox (<0.4%) after cellular uptake significantly hampers their final anticancer efficacy. Here, we report that simply doping protoporphyrin IX (PpIX, a commonly used hydrophobic photosensitizer) into the lipid bilayers of Dox-loaded liposomes (the resultant product is termed PpIX/Dox liposomes) is a feasible way to promote the nuclear delivery of Dox. This facile strategy relies on a unique property of PpIX-it presents considerably higher affinity for the real plasma membrane over its liposomal carrier, which drives the doped PpIX molecules to detach from the liposomes when encountering cancer cells. We demonstrate that this process can trigger the efficient release of the loaded Dox molecules and allow them to enter the nuclei of MCF-7 breast cancer cells without being trapped by lysosomes. Regarding the drug-resistant MCF-7/ADR cells, the aberrant activation of the efflux pumps in the plasma membranes expels the internalized Dox. However, we strikingly find that the robust drug resistance can be reversed upon mild laser irradiation because the photodynamic effect of PpIX disrupts the drug efflux system (e.g., P-glycoprotein) and facilitates the nuclear entry of Dox. As a proof-of-concept, this PpIX doping strategy is also applicable for enhancing the effectiveness of cisplatin-loaded liposomes against both A549 and A549/DDP lung cancer cells. In vivo experimental results prove that a single injection of PpIX/Dox liposomes completely impedes the growth of MCF-7 tumors in nude mice within 2 weeks and, in combination with laser irradiation, can synergistically ablate MCF-7/ADR tumors. Biosafety assessments reveal no significant systemic toxicity caused by PpIX/Dox liposomes. This work exemplifies a facile method to modulate the subcellular fate of liposomal drugs and may inspire the optimization of nanopharmaceuticals in the near future.
临床上批准的阿霉素(Dox)负载脂质体(例如,Doxil)保证了良好的生物安全性,但它们在细胞摄取后将 Dox 递送到细胞核内的效率不足(<0.4%),这显著降低了它们的最终抗癌疗效。在这里,我们报告说,只需将原卟啉 IX(PpIX,一种常用的疏水性光敏剂)掺杂到负载 Dox 的脂质体的脂质双层中(所得产物称为 PpIX/Dox 脂质体),就可以促进 Dox 的核内递药。这种简便的策略依赖于 PpIX 的一个独特性质——它与真实的质膜相比,对其脂质体载体具有更高的亲和力,当遇到癌细胞时,这种亲和力会促使掺杂的 PpIX 分子从脂质体中脱离。我们证明,这个过程可以触发负载的 Dox 分子的有效释放,并允许它们进入 MCF-7 乳腺癌细胞的核内,而不会被溶酶体困住。对于多药耐药的 MCF-7/ADR 细胞,质膜中流出泵的异常激活会将内化的 Dox 排出。然而,我们惊人地发现,温和的激光照射可以逆转这种强大的耐药性,因为 PpIX 的光动力效应会破坏药物流出系统(例如 P-糖蛋白)并促进 Dox 的核内进入。作为概念验证,这种 PpIX 掺杂策略也可用于增强顺铂负载脂质体对 A549 和 A549/DDP 肺癌细胞的疗效。体内实验结果证明,单次注射 PpIX/Dox 脂质体可在 2 周内完全阻止裸鼠 MCF-7 肿瘤的生长,并且与激光照射联合使用,可以协同消融 MCF-7/ADR 肿瘤。生物安全性评估显示,PpIX/Dox 脂质体没有引起明显的全身毒性。这项工作展示了一种调节脂质体药物亚细胞命运的简便方法,可能会激发未来纳米药物的优化。