Suppr超能文献

PARP1 催化变异体揭示了多聚(ADP-核糖)在细胞生理学和应激反应中的分支和链长特异性功能。

PARP1 catalytic variants reveal branching and chain length-specific functions of poly(ADP-ribose) in cellular physiology and stress response.

机构信息

Department of Biology, University of Konstanz, 78457 Konstanz, Germany.

Department of Food Chemistry and Toxicology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany.

出版信息

Nucleic Acids Res. 2020 Oct 9;48(18):10015-10033. doi: 10.1093/nar/gkaa590.

Abstract

Poly(ADP-ribosyl)ation regulates numerous cellular processes like genome maintenance and cell death, thus providing protective functions but also contributing to several pathological conditions. Poly(ADP-ribose) (PAR) molecules exhibit a remarkable heterogeneity in chain lengths and branching frequencies, but the biological significance of this is basically unknown. To unravel structure-specific functions of PAR, we used PARP1 mutants producing PAR of different qualities, i.e. short and hypobranched (PARP1\G972R), short and moderately hyperbranched (PARP1\Y986S), or strongly hyperbranched PAR (PARP1\Y986H). By reconstituting HeLa PARP1 knockout cells, we demonstrate that PARP1\G972R negatively affects cellular endpoints, such as viability, cell cycle progression and genotoxic stress resistance. In contrast, PARP1\Y986S elicits only mild effects, suggesting that PAR branching compensates for short polymer length. Interestingly, PARP1\Y986H exhibits moderate beneficial effects on cell physiology. Furthermore, different PARP1 mutants have distinct effects on molecular processes, such as gene expression and protein localization dynamics of PARP1 itself, and of its downstream factor XRCC1. Finally, the biological relevance of PAR branching is emphasized by the fact that branching frequencies vary considerably during different phases of the DNA damage-induced PARylation reaction and between different mouse tissues. Taken together, this study reveals that PAR branching and chain length essentially affect cellular functions, which further supports the notion of a 'PAR code'.

摘要

聚(ADP-核糖)化调节着许多细胞过程,如基因组维护和细胞死亡,从而提供保护功能,但也导致几种病理状况。聚(ADP-核糖)(PAR)分子在链长和分支频率上表现出显著的异质性,但这种异质性的生物学意义基本上是未知的。为了揭示 PAR 的结构特异性功能,我们使用产生不同质量 PAR 的 PARP1 突变体,即短而低分支(PARP1\G972R)、短而中度高分支(PARP1\Y986S)或强高分支 PAR(PARP1\Y986H)。通过重建 HeLa PARP1 敲除细胞,我们证明 PARP1\G972R 负调控细胞终点,如细胞活力、细胞周期进程和遗传毒性应激抗性。相比之下,PARP1\Y986S 只引起轻微的影响,表明 PAR 分支补偿了短聚合物长度。有趣的是,PARP1\Y986H 对细胞生理表现出适度的有益影响。此外,不同的 PARP1 突变体对分子过程有不同的影响,如基因表达和 PARP1 本身及其下游因子 XRCC1 的蛋白质定位动力学。最后,PAR 分支的生物学相关性通过以下事实得到强调:在 DNA 损伤诱导的 PAR 化反应的不同阶段以及在不同的小鼠组织之间,分支频率变化很大。总之,这项研究揭示了 PAR 分支和链长对细胞功能有本质影响,这进一步支持了“PAR 密码”的概念。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27b0/7544232/93f03f20e026/gkaa590fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验