Suppr超能文献

基于卷积神经网络的 CT 扫描脑梗死病灶水平分类方法研究。

Towards subject-level cerebral infarction classification of CT scans using convolutional networks.

机构信息

Department of Diagnostic and Interventional Radiology, School of Medicine & Klinikum rechts der Isar, Technical University of Munich, München, Germany.

Chair of Biomedical Physics, Department of Physics and Munich School of BioEngineering, Technical University of Munich, Garching, Germany.

出版信息

PLoS One. 2020 Jul 15;15(7):e0235765. doi: 10.1371/journal.pone.0235765. eCollection 2020.

Abstract

Automatic evaluation of 3D volumes is a topic of importance in order to speed up clinical decision making. We describe a method to classify computed tomography scans on volume level for the presence of non-acute cerebral infarction. This is not a trivial task, as the lesions are often similar to other areas in the brain regarding shape and intensity. A three stage architecture is used for classification: 1) A cranial cavity segmentation network is developed, trained and applied. 2) Region proposals are generated 3) Connected regions are classified using a multi-resolution, densely connected 3D convolutional network. Mean area under curve values for subject level classification are 0.95 for the unstratified test set, 0.88 for stratification by patient age and 0.93 for stratification by CT scanner model. We use a partly segmented dataset of 555 scans of which 186 scans are used in the unstratified test set. Furthermore we examine possible dataset bias for scanner model and patient age parameters. We show a successful application of the proposed three-stage model for full volume classification. In contrast to black-box approaches, the convolutional network's decision can be further assessed by examination of intermediate segmentation results.

摘要

自动评估 3D 体积对于加速临床决策非常重要。我们描述了一种用于在体积水平上对计算机断层扫描进行分类以检测非急性脑梗死的方法。这不是一项简单的任务,因为病变在形状和强度方面通常与大脑的其他区域相似。分类使用了三阶段架构:1)开发、训练和应用颅腔分割网络。2)生成区域建议。3)使用多分辨率、密集连接的 3D 卷积网络对连通区域进行分类。对于无分层测试集,受试者水平分类的平均曲线下面积值为 0.95,按患者年龄分层为 0.88,按 CT 扫描仪模型分层为 0.93。我们使用了一个部分分割的 555 个扫描数据集,其中 186 个扫描用于无分层测试集。此外,我们还检查了扫描仪模型和患者年龄参数的可能数据集偏差。我们展示了所提出的三阶段模型在全体积分类中的成功应用。与黑盒方法相比,可以通过检查中间分割结果来进一步评估卷积网络的决策。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验