Suppr超能文献

美国疫情爆发最初几个月期间新冠病毒基因组的突变频率

Mutational Frequencies of SARS-CoV-2 Genome during the Beginning Months of the Outbreak in USA.

作者信息

Kaushal Neha, Gupta Yogita, Goyal Mehendi, Khaiboullina Svetlana F, Baranwal Manoj, Verma Subhash C

机构信息

Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala 147004, India.

Talwar and Talwar Consultants, Mohali 160055, India.

出版信息

Pathogens. 2020 Jul 13;9(7):565. doi: 10.3390/pathogens9070565.

Abstract

SARS-CoV-2 has spread very quickly from its first reported case on 19 January 2020 in the United Stated of America, leading WHO to declare pandemic by 11 March 2020. RNA viruses accumulate mutations following replication and passage in human population, which prompted us to determine the rate and the regions (hotspots) of the viral genome with high rates of mutation. We analyzed the rate of mutation accumulation over a period of 11 weeks (submitted between 19th January to 15 April 2020) in USA SARS-CoV-2 genome. Our analysis identified that majority of the viral genes accumulated mutations, although with varying rates and these included NSP2, NSP3, RdRp, helicase, Spike, ORF3a, ORF8, and Nucleocapsid protein. Sixteen mutations accumulated in Spike protein in which four mutations are located in the receptor binding domain. Intriguingly, we identified a fair number of viral proteins (NSP7, NSP9, NSP10, NSP11, Envelop, ORF6, and ORF7b proteins), which did not accumulate any mutation. Limited changes in these proteins may suggest that they have conserved functions, which are essential for virus propagation. This provides a basis for a better understanding of the genetic variation in SARS-CoV-2 circulating in the US, which could help in identifying potential therapeutic targets for controlling COVID-19.

摘要

严重急性呼吸综合征冠状病毒2(SARS-CoV-2)自2020年1月19日在美国首次报告病例后迅速传播,导致世界卫生组织于2020年3月11日宣布其为大流行病。RNA病毒在人群中复制和传播后会积累突变,这促使我们确定病毒基因组中突变率高的区域(热点)。我们分析了美国SARS-CoV-2基因组在11周内(2020年1月19日至4月15日提交)的突变积累率。我们的分析发现,大多数病毒基因都积累了突变,尽管速率各不相同,这些基因包括非结构蛋白2(NSP2)、非结构蛋白3(NSP3)、RNA依赖性RNA聚合酶(RdRp)、解旋酶、刺突蛋白、开放阅读框3a(ORF3a)、开放阅读框8(ORF8)和核衣壳蛋白。刺突蛋白积累了16个突变,其中4个突变位于受体结合域。有趣的是,我们发现相当数量的病毒蛋白(NSP7、NSP9、NSP10、NSP11、包膜蛋白、ORF6和ORF7b蛋白)没有积累任何突变。这些蛋白的有限变化可能表明它们具有保守功能,这对病毒传播至关重要。这为更好地理解在美国传播的SARS-CoV-2的基因变异提供了基础,有助于确定控制2019冠状病毒病(COVID-19)的潜在治疗靶点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35a5/7400123/7cf213969ba8/pathogens-09-00565-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验