Carrow Brad P, Sampson Jessica, Wang Long
Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States.
Isr J Chem. 2020 Mar;60(3-4):230-258. doi: 10.1002/ijch.201900095. Epub 2019 Dec 13.
This review analyzes recent mechanistic studies that have provided new insights into how the structure of a metal complex influences the rate and selectivity of base-assisted C-H cleavage. Partitioning a broader mechanistic continuum into classes delimited by the polarization between catalyst and substrate during C-H cleavage is postulated as a method to identify catalysts favoring electrophilic or nucleophilic reactivity patterns, which may be predictive based on structural features of the metal complex (i.e., oxidation state, d-electron count, charge). Multi-metallic cooperativity and polynuclear speciation also provide new avenues to affect energy barriers for C-H cleavage and site selectivity beyond the limitations of single metal catalysts. An improved understanding of mechanistic nuances and structure-activity relationships on this important bond activation step carries important implications for efficiency and controllable site selectivity in non-directed C-H functionalization.
本综述分析了近期的机理研究,这些研究为金属配合物的结构如何影响碱辅助C-H键裂解的速率和选择性提供了新的见解。假定将更广泛的机理连续体划分为由C-H键裂解过程中催化剂与底物之间的极化所界定的类别,作为一种识别有利于亲电或亲核反应模式的催化剂的方法,这可能基于金属配合物的结构特征(即氧化态、d电子数、电荷)进行预测。多金属协同作用和多核形态也为影响C-H键裂解的能量壁垒和位点选择性提供了新途径,突破了单金属催化剂的局限性。更好地理解这一重要键活化步骤的机理细微差别和构效关系,对非定向C-H官能化的效率和可控位点选择性具有重要意义。