Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK.
Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK.
Mol Oncol. 2020 Oct;14(10):2384-2402. doi: 10.1002/1878-0261.12764. Epub 2020 Sep 1.
Multiplex immunofluorescence is a powerful tool for the simultaneous detection of tissue-based biomarkers, revolutionising traditional immunohistochemistry. The Opal methodology allows up to eight biomarkers to be measured concomitantly without cross-reactivity, permitting identification of different cell populations within the tumour microenvironment. In this study, we aimed to validate a multiplex immunofluorescence workflow in two complementary multiplex panels and evaluate the tumour immune microenvironment in colorectal cancer (CRC) formalin-fixed paraffin-embedded tissue. We stained CRC and tonsil samples using Opal multiplex immunofluorescence on a Leica BOND RX immunostainer. We then acquired images on an Akoya Vectra Polaris and performed multispectral unmixing using inform. Antibody panels were validated on tissue microarray sections containing cores from six normal tissue types, using qupath for image analysis. Comparisons between chromogenic immunohistochemistry and multiplex immunofluorescence on consecutive sections from the same tissue microarray showed significant correlation (r > 0.9, P-value < 0.0001), validating both panels. We identified many factors that influenced the quality of the acquired fluorescent images, including biomarker co-expression, staining order, Opal-antibody pairing, sample thickness, multispectral unmixing and biomarker detection order during image analysis. Overall, we report the optimisation and validation of a multiplex immunofluorescence process, from staining to image analysis, ensuring assay robustness. Our multiplex immunofluorescence protocols permit the accurate detection of multiple immune markers in various tissue types, using a workflow that enables rapid processing of samples, above and beyond previous workflows.
多重免疫荧光是一种用于同时检测组织生物标志物的强大工具,它彻底改变了传统的免疫组织化学。Opal 方法允许同时测量多达 8 种生物标志物而不会发生交叉反应,从而可以识别肿瘤微环境中的不同细胞群。在这项研究中,我们旨在通过两种互补的多重免疫荧光试剂盒验证多重免疫荧光工作流程,并评估结直肠癌(CRC)福尔马林固定石蜡包埋组织中的肿瘤免疫微环境。我们使用 Opal 多重免疫荧光试剂盒在 Leica BOND RX 免疫染色仪上对 CRC 和扁桃体样本进行染色。然后,我们在 Akoya Vectra Polaris 上获取图像,并使用 inform 进行多光谱解混。使用包含来自六种正常组织类型的核心的组织微阵列切片对抗体试剂盒进行验证,使用 qupath 进行图像分析。来自同一组织微阵列的连续切片的显色免疫组织化学与多重免疫荧光之间的比较显示出显著的相关性(r >0.9,P 值<0.0001),验证了这两个试剂盒。我们确定了许多影响获得的荧光图像质量的因素,包括生物标志物共表达、染色顺序、Opal-抗体配对、样本厚度、多光谱解混和图像分析过程中的生物标志物检测顺序。总的来说,我们报告了从染色到图像分析的多重免疫荧光过程的优化和验证,确保了检测的稳健性。我们的多重免疫荧光方案允许在各种组织类型中准确检测多个免疫标志物,使用的工作流程可以快速处理样本,优于以前的工作流程。