Computational Biomedicine Section, IAS-5/INM-9, Forschungzentrum Jülich, Wilhelm-Johnen-straße, D-52425 Jülich, Germany.
JARA-HPC, Forschungszentrum Jülich, D-54245 Jülich, Germany.
J Phys Chem Lett. 2020 Aug 6;11(15):6373-6381. doi: 10.1021/acs.jpclett.0c00999. Epub 2020 Jul 24.
The values of ligands unbinding to proteins are key parameters for drug discovery. Their predictions based on molecular simulation may under- or overestimate experiment in a system- and/or technique-dependent way. Here we use an established method-infrequent metadynamics, based on the AMBER force field-to compute the of the ligand iperoxo (in clinical use) targeting the muscarinic receptor M. The ligand charges are calculated by either (i) the Amber standard procedure or (ii) B3LYP-DFT. The calculations using (i) turn out not to provide a reasonable estimation of the transition-state free energy. Those using (ii) differ from experiment by 2 orders of magnitude. On the basis of B3LYP DFT QM/MM simulations, we suggest that the observed discrepancy in (ii) arises, at least in part, from the lack of electronic polarization and/or charge transfer in biomolecular force fields. These issues might be present in other systems, such as DNA-protein complexes.
配体与蛋白质解联的 值是药物发现的关键参数。基于分子模拟的预测可能会以系统和/或技术依赖的方式低估或高估实验结果。在这里,我们使用一种已建立的方法——基于 AMBER 力场的不频繁元动力学,来计算针对毒蕈碱受体 M 的配体iperoxo(临床使用)的 值。配体电荷是通过以下两种方法之一计算的:(i)Amber 标准程序或(ii)B3LYP-DFT。使用(i)的计算结果并不能合理估计过渡态自由能。使用(ii)的计算结果与实验值相差 2 个数量级。基于 B3LYP DFT QM/MM 模拟,我们认为(ii)中观察到的差异至少部分是由于生物分子力场中缺乏电子极化和/或电荷转移。这些问题可能存在于其他系统中,如 DNA-蛋白质复合物。