Suppr超能文献

通过整合跨平台数据分析鉴定肺癌的 lncRNA 生物标志物。

Identification of lncRNA biomarkers for lung cancer through integrative cross-platform data analyses.

机构信息

Department of Quantitative Health Sciences, University of Hawaii John A. Burns School of Medicine, The University of Hawaii at Manoa, Honolulu, HI 96813, USA.

Department of Molecular Biosciences and Bioengineering, The University of Hawaii at Manoa College of Tropical Agriculture and Human Resources, Agricultural Sciences 218, Honolulu, HI 96822, USA.

出版信息

Aging (Albany NY). 2020 Jul 16;12(14):14506-14527. doi: 10.18632/aging.103496.

Abstract

This study was designed to identify lncRNA biomarker candidates using lung cancer data from RNA-Seq and microarray platforms separately.Lung cancer datasets were obtained from the Gene Expression Omnibus (GEO, n = 287) and The Cancer Genome Atlas (TCGA, n = 216) repositories, only common lncRNAs were used. Differentially expressed (DE) lncRNAs in tumors with respect to normal were selected from the Affymetrix and TCGA datasets. A training model consisting of the top 20 DE Affymetrix lncRNAs was used for validation in the TCGA and Agilent datasets. A second similar training model was generated using the TCGA dataset.First, a model using the top 20 DE lncRNAs from Affymetrix for training and validated using TCGA and Agilent, achieved high prediction accuracy for both training (98.5% AUC for Affymetrix) and validation (99.2% AUC for TCGA and 92.8% AUC for Agilent). A similar model using the top 20 DE lncRNAs from TCGA for training and validated using Affymetrix and Agilent, also achieved high prediction accuracy for both training (97.7% AUC for TCGA) and validation (96.5% AUC for Affymetrix and 80.9% AUC for Agilent). Eight lncRNAs were found to be overlapped from these two lists.

摘要

本研究旨在分别使用 RNA-Seq 和微阵列平台的肺癌数据来鉴定 lncRNA 生物标志物候选物。从基因表达综合数据库(GEO,n=287)和癌症基因组图谱(TCGA,n=216)存储库中获取肺癌数据集,仅使用常见的 lncRNA。从 Affymetrix 和 TCGA 数据集选择肿瘤相对于正常的差异表达(DE)lncRNA。使用前 20 个 DE Affymetrix lncRNA 的训练模型用于在 TCGA 和 Agilent 数据集中进行验证。使用 TCGA 数据集生成了第二个类似的训练模型。首先,使用 Affymetrix 中前 20 个 DE lncRNA 进行训练并使用 TCGA 和 Agilent 进行验证的模型,在训练(Affymetrix 的 AUC 为 98.5%)和验证(TCGA 的 AUC 为 99.2%,Agilent 的 AUC 为 92.8%)方面均具有很高的预测准确性。使用 TCGA 中前 20 个 DE lncRNA 进行训练并使用 Affymetrix 和 Agilent 进行验证的类似模型,在训练(TCGA 的 AUC 为 97.7%)和验证(Affymetrix 的 AUC 为 96.5%,Agilent 的 AUC 为 80.9%)方面均具有很高的预测准确性。从这两个列表中发现了 8 个重叠的 lncRNA。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6fa0/7425463/0cf80a5b38ff/aging-12-103496-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验